Edϕ: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cmloegcmluin (talk | contribs)
No edit summary
Cmloegcmluin (talk | contribs)
No edit summary
Line 1: Line 1:
7 steps of 10ed2 closely approximates the 13th harmonic. The 13th harmonic is close to acoustic phi (1.618033989). If we divide acoustic phi into 7 steps, then 10 of those steps gets us close to an octave.
The octave-reduced 13th harmonic, 13/8 (≈840.5276618¢), is closely approximated by 7 steps of 10ed2 (840¢).
 
13/8 (1.625) is also close to acoustic phi (≈1.618033989).  
 
So, if we divide acoustic phi into 7 steps, then 10 of those steps will bring us quite close to an octave.
 
This tuning therefore could also be thought of as 10edo with a stretched octave. Since the ratio between acoustic phi and the 10ed2 approximation of the 13th harmonic is ≈0.9917741623, the resulting stretched octave is 2^0.9917741623 = 1.988629015, or ≈1190.128995¢.


{| class="wikitable"
{| class="wikitable"
Line 5: Line 11:
|
|
| colspan="4" |'''10ed2'''
| colspan="4" |'''10ed2'''
| colspan="4" |'''7edφ'''
| colspan="4" |'''7edφ or 10ed(<math>2^{\frac{10log_2{φ}}{7}}</math>)'''
|-
|-
|'''scale step'''
|'''scale step'''
Line 22: Line 28:
|120
|120
|120
|120
|<math>φ^{\frac{1}{7}}</math>
|<math>φ^{\frac{1}{7}}</math> or <math>2^{\frac{1log_2{φ}}{7}}</math>
|1.071162542
|1.071162542
|119.0128995
|119.0128995
Line 32: Line 38:
|240
|240
|120
|120
|<math>φ^{\frac{2}{7}}</math>
|<math>φ^{\frac{2}{7}}</math> or <math>2^{\frac{2log_2{φ}}{7}}</math>
|1.147389191
|1.147389191
|238.025799
|238.025799
Line 42: Line 48:
|360
|360
|120
|120
|<math>φ^{\frac{3}{7}}</math>
|<math>φ^{\frac{3}{7}}</math> or <math>2^{\frac{3log_2{φ}}{7}}</math>
|1.229040323
|1.229040323
|357.0386984
|357.0386984
Line 52: Line 58:
|480
|480
|120
|120
|<math>φ^{\frac{4}{7}}</math>
|<math>φ^{\frac{4}{7}}</math> or <math>2^{\frac{4log_2{φ}}{7}}</math>
|1.316501956
|1.316501956
|476.0515979
|476.0515979
Line 62: Line 68:
|600
|600
|120
|120
|<math>φ^{\frac{5}{7}}</math>
|<math>φ^{\frac{5}{7}}</math> or <math>2^{\frac{5log_2{φ}}{7}}</math>
|1.410187582
|1.410187582
|595.0644974
|595.0644974
Line 72: Line 78:
|720
|720
|120
|120
|<math>φ^{\frac{6}{7}}</math>
|<math>φ^{\frac{6}{7}}</math> or <math>2^{\frac{6log_2{φ}}{7}}</math>
|1.510540115
|1.510540115
|714.0773969
|714.0773969
Line 82: Line 88:
|840
|840
|120
|120
|<math>φ^{\frac{7}{7}}</math>
|<math>φ^{\frac{7}{7}}</math> or <math>2^{\frac{7log_2{φ}}{7}}</math>
|1.618033989
|1.618033989
|833.0902964
|833.0902964
Line 92: Line 98:
|960
|960
|120
|120
|<math>φ^{\frac{8}{7}}</math>
|<math>φ^{\frac{8}{7}}</math> or <math>2^{\frac{8log_2{φ}}{7}}</math>
|1.7331774
|1.7331774
|952.1031958
|952.1031958
Line 102: Line 108:
|1080
|1080
|120
|120
|<math>φ^{\frac{9}{7}}</math>
|<math>φ^{\frac{9}{7}}</math> or <math>2^{\frac{9log_2{φ}}{7}}</math>
|1.85651471
|1.85651471
|1071.116095
|1071.116095
Line 112: Line 118:
|1200
|1200
|120
|120
|<math>φ^{\frac{10}{7}}</math>
|<math>φ^{\frac{10}{7}}</math> or <math>2^{\frac{10log_2{φ}}{7}}</math>
|1.988629015
|1.988629015
|1190.128995
|1190.128995
|119.0128995
|119.0128995
|}
|}

Revision as of 19:04, 8 February 2020

The octave-reduced 13th harmonic, 13/8 (≈840.5276618¢), is closely approximated by 7 steps of 10ed2 (840¢).

13/8 (1.625) is also close to acoustic phi (≈1.618033989).

So, if we divide acoustic phi into 7 steps, then 10 of those steps will bring us quite close to an octave.

This tuning therefore could also be thought of as 10edo with a stretched octave. Since the ratio between acoustic phi and the 10ed2 approximation of the 13th harmonic is ≈0.9917741623, the resulting stretched octave is 2^0.9917741623 = 1.988629015, or ≈1190.128995¢.

10ed2 7edφ or 10ed([math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} }[/math])
scale step frequency multiplier (definition) 10ed2 frequency multiplier (decimal) pitch (¢) Δ (¢) frequency multiplier (definition) frequency multiplier (decimal) pitch (¢) Δ (¢)
1 [math]\displaystyle{ 2^{\frac{1}{10}} }[/math] 1.071773463 120 120 [math]\displaystyle{ φ^{\frac{1}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{1log_2{φ}}{7}} }[/math] 1.071162542 119.0128995 119.0128995
2 [math]\displaystyle{ 2^{\frac{2}{10}} }[/math] 1.148698355 240 120 [math]\displaystyle{ φ^{\frac{2}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{2log_2{φ}}{7}} }[/math] 1.147389191 238.025799 119.0128995
3 [math]\displaystyle{ 2^{\frac{3}{10}} }[/math] 1.231144413 360 120 [math]\displaystyle{ φ^{\frac{3}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{3log_2{φ}}{7}} }[/math] 1.229040323 357.0386984 119.0128995
4 [math]\displaystyle{ 2^{\frac{4}{10}} }[/math] 1.319507911 480 120 [math]\displaystyle{ φ^{\frac{4}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{4log_2{φ}}{7}} }[/math] 1.316501956 476.0515979 119.0128995
5 [math]\displaystyle{ 2^{\frac{5}{10}} }[/math] 1.414213562 600 120 [math]\displaystyle{ φ^{\frac{5}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{5log_2{φ}}{7}} }[/math] 1.410187582 595.0644974 119.0128995
6 [math]\displaystyle{ 2^{\frac{6}{10}} }[/math] 1.515716567 720 120 [math]\displaystyle{ φ^{\frac{6}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{6log_2{φ}}{7}} }[/math] 1.510540115 714.0773969 119.0128995
7 [math]\displaystyle{ 2^{\frac{7}{10}} }[/math] 1.624504793 840 120 [math]\displaystyle{ φ^{\frac{7}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{7log_2{φ}}{7}} }[/math] 1.618033989 833.0902964 119.0128995
8 [math]\displaystyle{ 2^{\frac{8}{10}} }[/math] 1.741101127 960 120 [math]\displaystyle{ φ^{\frac{8}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{8log_2{φ}}{7}} }[/math] 1.7331774 952.1031958 119.0128995
9 [math]\displaystyle{ 2^{\frac{9}{10}} }[/math] 1.866065983 1080 120 [math]\displaystyle{ φ^{\frac{9}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{9log_2{φ}}{7}} }[/math] 1.85651471 1071.116095 119.0128995
10 [math]\displaystyle{ 2^{\frac{10}{10}} }[/math] 2 1200 120 [math]\displaystyle{ φ^{\frac{10}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} }[/math] 1.988629015 1190.128995 119.0128995