101edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 588470276 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 588490668 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-08-01 11:30:27 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-08-01 14:12:21 UTC</tt>.<br>
: The original revision id was <tt>588470276</tt>.<br>
: The original revision id was <tt>588490668</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**//101-EDO//** divides the [[octave]] into 101 equal parts of 11.881 [[cent]]s each. It can be used to tune the [[Schismatic family|grackle temperament]]. It is the 26th [[prime numbers|prime]] edo. The 101cd val provides an excellent tuning for [[Magic family#Witchcraft|witchcraft temperament]], falling between the 13 and 15 limit least squares tuning.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**//101-EDO//** divides the [[octave]] into 101 equal parts of 11.881 [[cent]]s each. It can be used to tune the [[Schismatic family|grackle temperament]]. It is the 26th [[prime numbers|prime]] edo. The 101cd val provides an excellent tuning for [[Magic family#Witchcraft|witchcraft temperament]], falling between the 13 and 15 limit least squares tuning.


[[5-limit]] commas: 32805/32768, &lt;5 13 -11|
[[5-limit]] [[#|commas]]: 32805/32768, &lt;5 13 -11|


[[7-limit]] commas: 126/125, 32805/32768, 2430/2401
[[7-limit]] commas: 126/125, 32805/32768, 2430/2401
Line 15: Line 15:


**25 13 25 25 13:** //3L2s MOS// (Pentatonic)
**25 13 25 25 13:** //3L2s MOS// (Pentatonic)
|| 25/101 || 297.03 ||
|| 25 || 297.03 ||
|| 38/101 || 451.485 ||
|| 38 || 451.485 ||
|| 63/101 || 748.515 ||
|| 63 || 748.515 ||
|| 88/101 || 1045.545 ||
|| 88 || 1045.545 ||
**17 17 8 17 17 17 8:** //5L2s MOS// (Diatonic Pythagorean)
**17 17 8 17 17 17 8:** //5L2s MOS// ([[#|Diatonic]] Pythagorean)
|| **17/101** || **201.98** ||
|| **17** || **201.98** ||
|| 34/101 || 403.96 ||
|| 34 || 403.96 ||
|| **42/101** || **499.01** ||
|| **42** || **499.01** ||
|| **59/101** || **700.99** ||
|| **59** || **700.99** ||
|| **76/101** || **902.97** ||
|| **76** || **902.97** ||
|| 93/101 || 1104.95 ||
|| 93 || 1104.95 ||
**13 13 13 13 13 13 13 10:** //7L1s MOS// (Grumpy Octatonic)
**13 13 13 13 13 13 13 10:** //7L1s MOS// (Grumpy Octatonic)
|| 13/101 || 154.455 ||
|| 13 || 154.455 ||
|| 26/101 || 308.911 ||
|| 26 || 308.911 ||
|| 39/101 || 463.366 ||
|| 39 || 463.366 ||
|| 52/101 || 617.822 ||
|| 52 || 617.822 ||
|| 65/101 || 772.277 ||
|| 65 || 772.277 ||
|| 78/101 || 926.733 ||
|| 78 || 926.733 ||
|| 91/101 || 1081.188 ||
|| 91 || 1081.188 ||
**13 13 13 5 13 13 13 13 5:** //7L2s MOS// (Superdiatonic 1/13-tone 13;5 relation)
**13 13 13 5 13 13 13 13 5:** //7L2s MOS// (Superdiatonic 1/13-tone 13;5 relation)
|| **13/101** || **154.455** ||
|| **13/101** || **154.455** ||
Line 44: Line 44:
|| 96/101 || 1045.545 ||
|| 96/101 || 1045.545 ||
**10 10 7 10 10 10 7 10 10 10 7:** //8L3s MOS// (Improper Sensi-11)
**10 10 7 10 10 10 7 10 10 10 7:** //8L3s MOS// (Improper Sensi-11)
|| **10/101** || **118.812** ||
|| **10** || **118.812** ||
|| 20/101 || 237.624 ||
|| 20 || 237.624 ||
|| **27/101** || **320.792** ||
|| **27** || **320.792** ||
|| **37/101** || **439.604** ||
|| **37** || **439.604** ||
|| **47/101** || **558.416** ||
|| **47** || **558.416** ||
|| 57/101 || 677.228 ||
|| 57 || 677.228 ||
|| **64/101** || **760.396** ||
|| **64** || **760.396** ||
|| **74/101** || **879.218** ||
|| **74** || **879.218** ||
|| **84/101** || **998.03** ||
|| **84** || **998.03** ||
|| 94/101 || 1116.842 ||
|| 94 || 1116.842 ||
**7 7 7 8 7 7 7 7 8 7 7 7 7 8:** //3L11s MOS// (Anti-Ketradektriatoh form)
**7 7 7 8 7 7 7 7 8 7 7 7 7 8:** //3L11s MOS// (Anti-Ketradektriatoh [[#|form]])
|| **7** || **83.168** ||
|| **14** || **166.337** ||
|| 22 || 261.386 ||
|| **29** || **344.5545** ||
|| **36** || **427.723** ||
|| **43** || **510.891** ||
|| **50** || **594.0595** ||
|| 58 || 689.119 ||
|| **65** || **772.287** ||
|| **72** || **855.4455** ||
|| **79** || **938.614** ||
|| **86** || **1021.782** ||
|| 93 || 1104.95 ||


=Links=  
=Links=  
Line 61: Line 74:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;101edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;&lt;em&gt;101-EDO&lt;/em&gt;&lt;/strong&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 101 equal parts of 11.881 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It can be used to tune the &lt;a class="wiki_link" href="/Schismatic%20family"&gt;grackle temperament&lt;/a&gt;. It is the 26th &lt;a class="wiki_link" href="/prime%20numbers"&gt;prime&lt;/a&gt; edo. The 101cd val provides an excellent tuning for &lt;a class="wiki_link" href="/Magic%20family#Witchcraft"&gt;witchcraft temperament&lt;/a&gt;, falling between the 13 and 15 limit least squares tuning.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;101edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;&lt;em&gt;101-EDO&lt;/em&gt;&lt;/strong&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 101 equal parts of 11.881 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It can be used to tune the &lt;a class="wiki_link" href="/Schismatic%20family"&gt;grackle temperament&lt;/a&gt;. It is the 26th &lt;a class="wiki_link" href="/prime%20numbers"&gt;prime&lt;/a&gt; edo. The 101cd val provides an excellent tuning for &lt;a class="wiki_link" href="/Magic%20family#Witchcraft"&gt;witchcraft temperament&lt;/a&gt;, falling between the 13 and 15 limit least squares tuning.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; commas: 32805/32768, &amp;lt;5 13 -11|&lt;br /&gt;
&lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; [[#|commas]]: 32805/32768, &amp;lt;5 13 -11|&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; commas: 126/125, 32805/32768, 2430/2401&lt;br /&gt;
&lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; commas: 126/125, 32805/32768, 2430/2401&lt;br /&gt;
Line 72: Line 85:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;25/101&lt;br /&gt;
         &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;297.03&lt;br /&gt;
         &lt;td&gt;297.03&lt;br /&gt;
Line 78: Line 91:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;38/101&lt;br /&gt;
         &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;451.485&lt;br /&gt;
         &lt;td&gt;451.485&lt;br /&gt;
Line 84: Line 97:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;63/101&lt;br /&gt;
         &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;748.515&lt;br /&gt;
         &lt;td&gt;748.515&lt;br /&gt;
Line 90: Line 103:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;88/101&lt;br /&gt;
         &lt;td&gt;88&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1045.545&lt;br /&gt;
         &lt;td&gt;1045.545&lt;br /&gt;
Line 97: Line 110:
&lt;/table&gt;
&lt;/table&gt;


&lt;strong&gt;17 17 8 17 17 17 8:&lt;/strong&gt; &lt;em&gt;5L2s MOS&lt;/em&gt; (Diatonic Pythagorean)&lt;br /&gt;
&lt;strong&gt;17 17 8 17 17 17 8:&lt;/strong&gt; &lt;em&gt;5L2s MOS&lt;/em&gt; ([[#|Diatonic]] Pythagorean)&lt;br /&gt;




&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;17/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;17&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;201.98&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;201.98&lt;/strong&gt;&lt;br /&gt;
Line 108: Line 121:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;34/101&lt;br /&gt;
         &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;403.96&lt;br /&gt;
         &lt;td&gt;403.96&lt;br /&gt;
Line 114: Line 127:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;42/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;42&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;499.01&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;499.01&lt;/strong&gt;&lt;br /&gt;
Line 120: Line 133:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;59/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;59&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;700.99&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;700.99&lt;/strong&gt;&lt;br /&gt;
Line 126: Line 139:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;76/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;76&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;902.97&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;902.97&lt;/strong&gt;&lt;br /&gt;
Line 132: Line 145:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;93/101&lt;br /&gt;
         &lt;td&gt;93&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1104.95&lt;br /&gt;
         &lt;td&gt;1104.95&lt;br /&gt;
Line 144: Line 157:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;13/101&lt;br /&gt;
         &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;154.455&lt;br /&gt;
         &lt;td&gt;154.455&lt;br /&gt;
Line 150: Line 163:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;26/101&lt;br /&gt;
         &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;308.911&lt;br /&gt;
         &lt;td&gt;308.911&lt;br /&gt;
Line 156: Line 169:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;39/101&lt;br /&gt;
         &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;463.366&lt;br /&gt;
         &lt;td&gt;463.366&lt;br /&gt;
Line 162: Line 175:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;52/101&lt;br /&gt;
         &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;617.822&lt;br /&gt;
         &lt;td&gt;617.822&lt;br /&gt;
Line 168: Line 181:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;65/101&lt;br /&gt;
         &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;772.277&lt;br /&gt;
         &lt;td&gt;772.277&lt;br /&gt;
Line 174: Line 187:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;78/101&lt;br /&gt;
         &lt;td&gt;78&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;926.733&lt;br /&gt;
         &lt;td&gt;926.733&lt;br /&gt;
Line 180: Line 193:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;91/101&lt;br /&gt;
         &lt;td&gt;91&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1081.188&lt;br /&gt;
         &lt;td&gt;1081.188&lt;br /&gt;
Line 246: Line 259:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;10/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;10&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;118.812&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;118.812&lt;/strong&gt;&lt;br /&gt;
Line 252: Line 265:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;20/101&lt;br /&gt;
         &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;237.624&lt;br /&gt;
         &lt;td&gt;237.624&lt;br /&gt;
Line 258: Line 271:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;27/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;27&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;320.792&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;320.792&lt;/strong&gt;&lt;br /&gt;
Line 264: Line 277:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;37/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;37&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;439.604&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;439.604&lt;/strong&gt;&lt;br /&gt;
Line 270: Line 283:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;47/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;47&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;558.416&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;558.416&lt;/strong&gt;&lt;br /&gt;
Line 276: Line 289:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;57/101&lt;br /&gt;
         &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;677.228&lt;br /&gt;
         &lt;td&gt;677.228&lt;br /&gt;
Line 282: Line 295:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;64/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;64&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;760.396&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;760.396&lt;/strong&gt;&lt;br /&gt;
Line 288: Line 301:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;74/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;74&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;879.218&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;879.218&lt;/strong&gt;&lt;br /&gt;
Line 294: Line 307:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;strong&gt;84/101&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;84&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;998.03&lt;/strong&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;998.03&lt;/strong&gt;&lt;br /&gt;
Line 300: Line 313:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;94/101&lt;br /&gt;
         &lt;td&gt;94&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1116.842&lt;br /&gt;
         &lt;td&gt;1116.842&lt;br /&gt;
Line 307: Line 320:
&lt;/table&gt;
&lt;/table&gt;


&lt;strong&gt;7 7 7 8 7 7 7 7 8 7 7 7 7 8:&lt;/strong&gt; &lt;em&gt;3L11s MOS&lt;/em&gt; (Anti-Ketradektriatoh form)&lt;br /&gt;
&lt;strong&gt;7 7 7 8 7 7 7 7 8 7 7 7 7 8:&lt;/strong&gt; &lt;em&gt;3L11s MOS&lt;/em&gt; (Anti-Ketradektriatoh [[#|form]])&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;7&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;83.168&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;14&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;166.337&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;261.386&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;29&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;344.5545&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;36&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;427.723&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;43&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;510.891&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;50&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;594.0595&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;689.119&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;65&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;772.287&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;72&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;855.4455&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;79&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;938.614&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;86&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;1021.782&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;93&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1104.95&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Links&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Links&lt;/h1&gt;
  &lt;a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/11157" rel="nofollow"&gt;The Ellis duodene in 101-equal&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
  &lt;a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/11157" rel="nofollow"&gt;The Ellis duodene in 101-equal&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 14:12, 1 August 2016

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2016-08-01 14:12:21 UTC.
The original revision id was 588490668.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

**//101-EDO//** divides the [[octave]] into 101 equal parts of 11.881 [[cent]]s each. It can be used to tune the [[Schismatic family|grackle temperament]]. It is the 26th [[prime numbers|prime]] edo. The 101cd val provides an excellent tuning for [[Magic family#Witchcraft|witchcraft temperament]], falling between the 13 and 15 limit least squares tuning.

[[5-limit]] [[#|commas]]: 32805/32768, <5 13 -11|

[[7-limit]] commas: 126/125, 32805/32768, 2430/2401

==__Some important MOS scales:__== 

**25 13 25 25 13:** //3L2s MOS// (Pentatonic)
|| 25 || 297.03 ||
|| 38 || 451.485 ||
|| 63 || 748.515 ||
|| 88 || 1045.545 ||
**17 17 8 17 17 17 8:** //5L2s MOS// ([[#|Diatonic]] Pythagorean)
|| **17** || **201.98** ||
|| 34 || 403.96 ||
|| **42** || **499.01** ||
|| **59** || **700.99** ||
|| **76** || **902.97** ||
|| 93 || 1104.95 ||
**13 13 13 13 13 13 13 10:** //7L1s MOS// (Grumpy Octatonic)
|| 13 || 154.455 ||
|| 26 || 308.911 ||
|| 39 || 463.366 ||
|| 52 || 617.822 ||
|| 65 || 772.277 ||
|| 78 || 926.733 ||
|| 91 || 1081.188 ||
**13 13 13 5 13 13 13 13 5:** //7L2s MOS// (Superdiatonic 1/13-tone 13;5 relation)
|| **13/101** || **154.455** ||
|| **26/101** || **308.911** ||
|| 39/101 || 463.366 ||
|| **44/101** || **522.772** ||
|| **57/101** || **677.228** ||
|| **70/101** || **831.683** ||
|| **83/101** || **986.139** ||
|| 96/101 || 1045.545 ||
**10 10 7 10 10 10 7 10 10 10 7:** //8L3s MOS// (Improper Sensi-11)
|| **10** || **118.812** ||
|| 20 || 237.624 ||
|| **27** || **320.792** ||
|| **37** || **439.604** ||
|| **47** || **558.416** ||
|| 57 || 677.228 ||
|| **64** || **760.396** ||
|| **74** || **879.218** ||
|| **84** || **998.03** ||
|| 94 || 1116.842 ||
**7 7 7 8 7 7 7 7 8 7 7 7 7 8:** //3L11s MOS// (Anti-Ketradektriatoh [[#|form]])
|| **7** || **83.168** ||
|| **14** || **166.337** ||
|| 22 || 261.386 ||
|| **29** || **344.5545** ||
|| **36** || **427.723** ||
|| **43** || **510.891** ||
|| **50** || **594.0595** ||
|| 58 || 689.119 ||
|| **65** || **772.287** ||
|| **72** || **855.4455** ||
|| **79** || **938.614** ||
|| **86** || **1021.782** ||
|| 93 || 1104.95 ||

=Links= 
[[http://tech.groups.yahoo.com/group/tuning-math/message/11157|The Ellis duodene in 101-equal]]

Original HTML content:

<html><head><title>101edo</title></head><body><strong><em>101-EDO</em></strong> divides the <a class="wiki_link" href="/octave">octave</a> into 101 equal parts of 11.881 <a class="wiki_link" href="/cent">cent</a>s each. It can be used to tune the <a class="wiki_link" href="/Schismatic%20family">grackle temperament</a>. It is the 26th <a class="wiki_link" href="/prime%20numbers">prime</a> edo. The 101cd val provides an excellent tuning for <a class="wiki_link" href="/Magic%20family#Witchcraft">witchcraft temperament</a>, falling between the 13 and 15 limit least squares tuning.<br />
<br />
<a class="wiki_link" href="/5-limit">5-limit</a> [[#|commas]]: 32805/32768, &lt;5 13 -11|<br />
<br />
<a class="wiki_link" href="/7-limit">7-limit</a> commas: 126/125, 32805/32768, 2430/2401<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Some important MOS scales:"></a><!-- ws:end:WikiTextHeadingRule:0 --><u>Some important MOS scales:</u></h2>
 <br />
<strong>25 13 25 25 13:</strong> <em>3L2s MOS</em> (Pentatonic)<br />


<table class="wiki_table">
    <tr>
        <td>25<br />
</td>
        <td>297.03<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>451.485<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>748.515<br />
</td>
    </tr>
    <tr>
        <td>88<br />
</td>
        <td>1045.545<br />
</td>
    </tr>
</table>

<strong>17 17 8 17 17 17 8:</strong> <em>5L2s MOS</em> ([[#|Diatonic]] Pythagorean)<br />


<table class="wiki_table">
    <tr>
        <td><strong>17</strong><br />
</td>
        <td><strong>201.98</strong><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>403.96<br />
</td>
    </tr>
    <tr>
        <td><strong>42</strong><br />
</td>
        <td><strong>499.01</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>59</strong><br />
</td>
        <td><strong>700.99</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>76</strong><br />
</td>
        <td><strong>902.97</strong><br />
</td>
    </tr>
    <tr>
        <td>93<br />
</td>
        <td>1104.95<br />
</td>
    </tr>
</table>

<strong>13 13 13 13 13 13 13 10:</strong> <em>7L1s MOS</em> (Grumpy Octatonic)<br />


<table class="wiki_table">
    <tr>
        <td>13<br />
</td>
        <td>154.455<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>308.911<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>463.366<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>617.822<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>772.277<br />
</td>
    </tr>
    <tr>
        <td>78<br />
</td>
        <td>926.733<br />
</td>
    </tr>
    <tr>
        <td>91<br />
</td>
        <td>1081.188<br />
</td>
    </tr>
</table>

<strong>13 13 13 5 13 13 13 13 5:</strong> <em>7L2s MOS</em> (Superdiatonic 1/13-tone 13;5 relation)<br />


<table class="wiki_table">
    <tr>
        <td><strong>13/101</strong><br />
</td>
        <td><strong>154.455</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>26/101</strong><br />
</td>
        <td><strong>308.911</strong><br />
</td>
    </tr>
    <tr>
        <td>39/101<br />
</td>
        <td>463.366<br />
</td>
    </tr>
    <tr>
        <td><strong>44/101</strong><br />
</td>
        <td><strong>522.772</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>57/101</strong><br />
</td>
        <td><strong>677.228</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>70/101</strong><br />
</td>
        <td><strong>831.683</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>83/101</strong><br />
</td>
        <td><strong>986.139</strong><br />
</td>
    </tr>
    <tr>
        <td>96/101<br />
</td>
        <td>1045.545<br />
</td>
    </tr>
</table>

<strong>10 10 7 10 10 10 7 10 10 10 7:</strong> <em>8L3s MOS</em> (Improper Sensi-11)<br />


<table class="wiki_table">
    <tr>
        <td><strong>10</strong><br />
</td>
        <td><strong>118.812</strong><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>237.624<br />
</td>
    </tr>
    <tr>
        <td><strong>27</strong><br />
</td>
        <td><strong>320.792</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>37</strong><br />
</td>
        <td><strong>439.604</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>47</strong><br />
</td>
        <td><strong>558.416</strong><br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>677.228<br />
</td>
    </tr>
    <tr>
        <td><strong>64</strong><br />
</td>
        <td><strong>760.396</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>74</strong><br />
</td>
        <td><strong>879.218</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>84</strong><br />
</td>
        <td><strong>998.03</strong><br />
</td>
    </tr>
    <tr>
        <td>94<br />
</td>
        <td>1116.842<br />
</td>
    </tr>
</table>

<strong>7 7 7 8 7 7 7 7 8 7 7 7 7 8:</strong> <em>3L11s MOS</em> (Anti-Ketradektriatoh [[#|form]])<br />


<table class="wiki_table">
    <tr>
        <td><strong>7</strong><br />
</td>
        <td><strong>83.168</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>14</strong><br />
</td>
        <td><strong>166.337</strong><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>261.386<br />
</td>
    </tr>
    <tr>
        <td><strong>29</strong><br />
</td>
        <td><strong>344.5545</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>36</strong><br />
</td>
        <td><strong>427.723</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>43</strong><br />
</td>
        <td><strong>510.891</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>50</strong><br />
</td>
        <td><strong>594.0595</strong><br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>689.119<br />
</td>
    </tr>
    <tr>
        <td><strong>65</strong><br />
</td>
        <td><strong>772.287</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>72</strong><br />
</td>
        <td><strong>855.4455</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>79</strong><br />
</td>
        <td><strong>938.614</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>86</strong><br />
</td>
        <td><strong>1021.782</strong><br />
</td>
    </tr>
    <tr>
        <td>93<br />
</td>
        <td>1104.95<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Links"></a><!-- ws:end:WikiTextHeadingRule:2 -->Links</h1>
 <a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/11157" rel="nofollow">The Ellis duodene in 101-equal</a></body></html>