1L 6s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 565148739 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
There is one notable low-harmonic-entropy scale with this [[MOSScales|MOS]] pattern: [[Porcupine_family|Porcupine]], in which two generators make a 6/5 and three make a 4/3.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-04 11:16:26 UTC</tt>.<br>
: The original revision id was <tt>565148739</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">There is one notable low-harmonic-entropy scale with this [[MOSScales|MOS]] pattern: [[Porcupine family|Porcupine]], in which two generators make a 6/5 and three make a 4/3.


Other scales include very improper (incomplete) versions of negri, 12edo, etc.
Other scales include very improper (incomplete) versions of negri, 12edo, etc.
||||||||||~ Generator ||~ Cents ||~ Comments ||
|| 0\1 ||  ||  ||  ||  || 0 ||=  ||
||  ||  ||  || 1\10 ||  || 120 ||= L/s = 4 ||
||  ||  ||  ||  || 2\19 || 126.32 ||= Negri is around here ||
||  ||  ||  ||  ||  || 1200/(6+pi) ||  ||
||  ||  || 1\9 ||  ||  || 133.33 ||= L/s = 3 ||
||  ||  ||  ||  ||  || 1200/(6+e) ||  ||
||  ||  ||  ||  || 3\26 || 138.46 ||  ||
||  ||  ||  ||  ||  || 1200/(7+phi) ||  ||
||  ||  ||  || 2\17 ||  || 141,18 ||  ||
||  || 1\8 ||  ||  ||  || 150 ||= Boundary of propriety (generators
larger than this are proper) ||
||  ||  ||  ||  ||  || 1200/(6+sqrt(3)) ||  ||
||  ||  ||  || 3\23 ||  || 156.52 ||=  ||
||  ||  ||  ||  ||  || 1200/(6+phi) ||= Golden porcupine / golden hemikleismic ||
||  ||  ||  ||  || 5\38 || 157.89 ||=  ||
||  ||  ||  ||  ||  || 1200/(6+pi/2) ||  ||
||  ||  || 2\15 ||  ||  || 160 ||= Optimum rank range (L/s=3/2) porcupine ||
||  ||  ||  || 3\22 ||  || 163.64 ||= Porcupine is around here ||
|| 1\7 ||  ||  ||  ||  || 171.43 ||=  ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1L 6s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;There is one notable low-harmonic-entropy scale with this &lt;a class="wiki_link" href="/MOSScales"&gt;MOS&lt;/a&gt; pattern: &lt;a class="wiki_link" href="/Porcupine%20family"&gt;Porcupine&lt;/a&gt;, in which two generators make a 6/5 and three make a 4/3.&lt;br /&gt;
&lt;br /&gt;
Other scales include very improper (incomplete) versions of negri, 12edo, etc.&lt;br /&gt;


{| class="wikitable"
|-
! colspan="5" | Generator
! | Cents
! | Comments
|-
| | 0\1
| |
| |
| |
| |
| | 0
| style="text-align:center;" |
|-
| |
| |
| |
| | 1\10
| |
| | 120
| style="text-align:center;" | L/s = 4
|-
| |
| |
| |
| |
| | 2\19
| | 126.32
| style="text-align:center;" | Negri is around here
|-
| |
| |
| |
| |
| |
| | 1200/(6+pi)
| |
|-
| |
| |
| | 1\9
| |
| |
| | 133.33
| style="text-align:center;" | L/s = 3
|-
| |
| |
| |
| |
| |
| | 1200/(6+e)
| |
|-
| |
| |
| |
| |
| | 3\26
| | 138.46
| |
|-
| |
| |
| |
| |
| |
| | 1200/(7+phi)
| |
|-
| |
| |
| |
| | 2\17
| |
| | 141,18
| |
|-
| |
| | 1\8
| |
| |
| |
| | 150
| style="text-align:center;" | Boundary of propriety (generators


&lt;table class="wiki_table"&gt;
larger than this are proper)
    &lt;tr&gt;
|-
        &lt;th colspan="5"&gt;Generator&lt;br /&gt;
| |
&lt;/th&gt;
| |
        &lt;th&gt;Cents&lt;br /&gt;
| |
&lt;/th&gt;
| |
        &lt;th&gt;Comments&lt;br /&gt;
| |
&lt;/th&gt;
| | 1200/(6+sqrt(3))
    &lt;/tr&gt;
| |
    &lt;tr&gt;
|-
        &lt;td&gt;0\1&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 3\23
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 156.52
        &lt;td&gt;&lt;br /&gt;
| style="text-align:center;" |
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;0&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 1200/(6+phi)
    &lt;/tr&gt;
| style="text-align:center;" | Golden porcupine / golden hemikleismic
    &lt;tr&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 5\38
&lt;/td&gt;
| | 157.89
        &lt;td&gt;1\10&lt;br /&gt;
| style="text-align:center;" |
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;120&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td style="text-align: center;"&gt;L/s = 4&lt;br /&gt;
| |
&lt;/td&gt;
| | 1200/(6+pi/2)
    &lt;/tr&gt;
| |
    &lt;tr&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 2\15
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 160
        &lt;td&gt;&lt;br /&gt;
| style="text-align:center;" | Optimum rank range (L/s=3/2) porcupine
&lt;/td&gt;
|-
        &lt;td&gt;2\19&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;126.32&lt;br /&gt;
| |
&lt;/td&gt;
| | 3\22
        &lt;td style="text-align: center;"&gt;Negri is around here&lt;br /&gt;
| |
&lt;/td&gt;
| | 163.64
    &lt;/tr&gt;
| style="text-align:center;" | Porcupine is around here
    &lt;tr&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| | 1\7
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 171.43
        &lt;td&gt;&lt;br /&gt;
| style="text-align:center;" |
&lt;/td&gt;
|}
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(6+pi)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;133.33&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;L/s = 3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(6+e)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;138.46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(7+phi)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;141,18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Boundary of propriety (generators&lt;br /&gt;
larger than this are proper)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(6+sqrt(3))&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;156.52&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(6+phi)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Golden porcupine / golden hemikleismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;157.89&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(6+pi/2)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;160&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Optimum rank range (L/s=3/2) porcupine&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;163.64&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Porcupine is around here&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1\7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

There is one notable low-harmonic-entropy scale with this MOS pattern: Porcupine, in which two generators make a 6/5 and three make a 4/3.

Other scales include very improper (incomplete) versions of negri, 12edo, etc.

Generator Cents Comments
0\1 0
1\10 120 L/s = 4
2\19 126.32 Negri is around here
1200/(6+pi)
1\9 133.33 L/s = 3
1200/(6+e)
3\26 138.46
1200/(7+phi)
2\17 141,18
1\8 150 Boundary of propriety (generators

larger than this are proper)

1200/(6+sqrt(3))
3\23 156.52
1200/(6+phi) Golden porcupine / golden hemikleismic
5\38 157.89
1200/(6+pi/2)
2\15 160 Optimum rank range (L/s=3/2) porcupine
3\22 163.64 Porcupine is around here
1\7 171.43