User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave 33edo tunings.
What follows is a comparison of stretched- and compressed-octave 39edo tunings.


; [[ed5|76ed5]]  
171zpi
* Octave size: 1209.8{{c}}
; [[zpi|171zpi]]  
Stretching the octave of 33edo by around 10{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 76ed5 does this.
* Step size: NNN{{c}}, octave size: NNN{{c}}
{{Harmonics in equal|76|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 76ed5}}
_ing the octave of 39edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 171zpi does this. Because it shares error evenly between 39edo's fifths, it is suited for use as a [[dual-fifths]] tuning of 39edo.
{{Harmonics in equal|76|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 76ed5 (continued)}}
{{Harmonics in cet|30.973|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 171zpi}}
{{Harmonics in cet|30.973|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 171zpi (continued)}}


; [[ed7|92ed7]]
; 39edo
* Octave size: 1208.4{{c}}
* Step size: 30.769{{c}}, octave size: 1200.00{{c}}  
Stretching the octave of 33edo by around 8.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 92ed7 does this. So does the tuning [[zpi|137zpi]] whose octave differs by only 0.3{{c}}.
Pure-octaves 39edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|92|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92ed7}}
{{Harmonics in equal|39|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 39edo}}
{{Harmonics in equal|92|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92ed7 (continued)}}
{{Harmonics in equal|39|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 39edo (continued)}}


; [[equal tuning|114ed11]]  
13-limit WE
* Octave size: 1201.7{{c}}
; [[WE|39et, 13-limit WE tuning]]  
Stretching the octave of 33edo by around 2{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 114ed11 does this.
* Step size: 30.757{{c}}, octave size: NNN{{c}}
{{Harmonics in equal|114|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 114ed11}}
_ing the octave of 39edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in equal|114|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 114ed11 (continued)}}
{{Harmonics in cet|30.757|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 39et, 13-limit WE tuning}}
{{Harmonics in cet|30.757|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 39et, 13-limit WE tuning (continued)}}


; [[zpi|138zpi]]
101ed6
* Step size: 36.394{{c}}, octave size: 1201.0{{c}}
; [[101ed6]]  
Stretching the octave of 33edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 138zpi does this. So does the tuning [[equal tuning|122ed13]] whose octave differs by only 0.1{{c}}.
* Step size: NNN{{c}}, octave size: NNN{{c}}
{{Harmonics in cet|36.394|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 138zpi}}
_ing the octave of 101ed6 by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 101ed6 does this. So does [[zpi|172zpi]] whose octave differs by only 0.4{{c}}.
{{Harmonics in cet|36.394|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 138zpi (continued)}}
{{Harmonics in equal|101|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 101ed6}}
{{Harmonics in equal|101|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 101ed6 (continued)}}


; 33edo
2.3.5.11 WE
* Step size: 36.363{{c}}, octave size: 1200.0{{c}}  
; [[WE|39et, 2.3.5.11 WE tuning]]
Pure-octaves 33edo approximates all harmonics up to 16 within NNN{{c}}.
* Step size: 30.703{{c}}, octave size: NNN{{c}}
{{Harmonics in equal|33|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 33edo}}
_ing the octave of 39edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.5.11 WE tuning and 2.3.5.11 [[TE]] tuning both do this.
{{Harmonics in equal|33|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 33edo (continued)}}
{{Harmonics in cet|30.703|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 39et, 2.3.5.11 WE tuning}}
{{Harmonics in cet|30.703|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 39et, 2.3.5.11 WE tuning (continued)}}


; [[WE|33et, 13-limit WE tuning]]
173zpi
* Step size: 36.357{{c}}, octave size: 1199.8{{c}}
; [[zpi|173zpi]]  
Compressing the octave of 33edo by a fifth of a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
* Step size: 30.672{{c}}, octave size: NNN{{c}}
{{Harmonics in cet|36.357|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 33et, 13-limit WE tuning}}
_ing the octave of 39edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 173zpi does this. So does [[62edt]] whose octave differs by only 0.2{{c}}.
{{Harmonics in cet|36.357|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 33et, 13-limit WE tuning (continued)}}
{{Harmonics in cet|30.672|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 173zpi}}
{{Harmonics in cet|30.672|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 173zpi (continued)}}


; [[ed7|93ed7]]
* Octave size: 1196.4{{c}}
Compressing the octave of 33edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. If one wishes to use both 33edo's sharp and flat fifths simultaneously (see [[dual-fifth tuning]]), then this amount of stretch is ideal, because it evenly shares error between the two fifths. The tuning 93ed7 does this. So does the tuning [[equal tuning|52ed13]] whose octave differs by only 0.1{{c}}.
{{Harmonics in equal|93|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 93ed7}}
{{Harmonics in equal|93|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 93ed7 (continued)}}


; [[ed5|77ed5]]
110ed7
* Octave size: 1194.1{{c}}
; [[110ed7]]  
Compressing the octave of 33edo by around 6{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 77ed5 does this. So does the tuning [[zpi|139zpi]] whose octave differs by only 0.2{{c}}.
* Step size: NNN{{c}}, octave size: NNN{{c}}
{{Harmonics in equal|77|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 77ed5}}
_ing the octave of 39edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 110ed7 does this. So does [[equal tuning|145ed13]] whose octave differs by only 0.1{{c}}.
{{Harmonics in equal|77|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 77ed5 (continued)}}
{{Harmonics in equal|110|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 110ed7}}
{{Harmonics in equal|110|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 110ed7 (continued)}}


; [[equal tuning|115ed11]]  
 
* Octave size: 1191.2{{c}}
91ed5
Compressing the octave of 33edo by around 9{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 115ed11 does this. So do the tunings [[equal tuning|123ed13]] and [[AS|1ed47/46]] whose octaves are within 0.3{{c}} of 115ed11.
; [[91ed5]]  
{{Harmonics in equal|115|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 115ed11}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
{{Harmonics in equal|115|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 115ed11 (continued)}}
_ing the octave of 39edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 91ed5 does this.
{{Harmonics in equal|91|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 91ed5}}
{{Harmonics in equal|91|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 91ed5 (continued)}}


= Title2 =
= Title2 =

Revision as of 01:16, 30 August 2025

Quick link

User:BudjarnLambeth/Draft related tunings section

Title1

Octave stretch or compression

What follows is a comparison of stretched- and compressed-octave 39edo tunings.

171zpi

171zpi
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 39edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 171zpi does this. Because it shares error evenly between 39edo's fifths, it is suited for use as a dual-fifths tuning of 39edo.

Approximation of harmonics in 171zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +7.9 -12.6 -15.1 +1.3 -4.7 +7.2 -7.1 +5.8 +9.2 -0.9 +3.3
Relative (%) +25.7 -40.7 -48.7 +4.1 -15.0 +23.3 -23.0 +18.6 +29.7 -3.0 +10.6
Step 39 61 77 90 100 109 116 123 129 134 139
Approximation of harmonics in 171zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -11.4 +15.2 -11.3 +0.8 -11.2 +13.7 +13.0 -13.8 -5.4 +7.0 -8.0 +11.2
Relative (%) -36.8 +49.0 -36.6 +2.6 -36.2 +44.3 +42.1 -44.6 -17.3 +22.6 -25.8 +36.3
Step 143 148 151 155 158 162 165 167 170 173 175 178
39edo
  • Step size: 30.769 ¢, octave size: 1200.00 ¢

Pure-octaves 39edo approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in 39edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 +5.7 +0.0 +13.7 +5.7 -15.0 +0.0 +11.5 +13.7 +2.5 +5.7
Relative (%) +0.0 +18.6 +0.0 +44.5 +18.6 -48.7 +0.0 +37.3 +44.5 +8.2 +18.6
Steps
(reduced)
39
(0)
62
(23)
78
(0)
91
(13)
101
(23)
109
(31)
117
(0)
124
(7)
130
(13)
135
(18)
140
(23)
Approximation of harmonics in 39edo (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -9.8 -15.0 -11.3 +0.0 -12.6 +11.5 +10.2 +13.7 -9.2 +2.5 -12.9 +5.7
Relative (%) -31.7 -48.7 -36.9 +0.0 -41.1 +37.3 +33.1 +44.5 -30.0 +8.2 -41.9 +18.6
Steps
(reduced)
144
(27)
148
(31)
152
(35)
156
(0)
159
(3)
163
(7)
166
(10)
169
(13)
171
(15)
174
(18)
176
(20)
179
(23)

13-limit WE

39et, 13-limit WE tuning
  • Step size: 30.757 ¢, octave size: NNN ¢

_ing the octave of 39edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.

Approximation of harmonics in 39et, 13-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.5 +5.0 -1.0 +12.6 +4.5 +14.4 -1.4 +10.0 +12.1 +0.9 +4.0
Relative (%) -1.6 +16.2 -3.1 +40.9 +14.6 +47.0 -4.7 +32.4 +39.3 +2.9 +13.1
Step 39 62 78 91 101 110 117 124 130 135 140
Approximation of harmonics in 39et, 13-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -11.5 +14.0 -13.2 -1.9 -14.6 +9.5 +8.1 +11.6 -11.3 +0.4 -15.0 +3.5
Relative (%) -37.5 +45.4 -42.9 -6.2 -47.4 +30.8 +26.5 +37.8 -36.8 +1.3 -48.9 +11.5
Step 144 149 152 156 159 163 166 169 171 174 176 179

101ed6

101ed6
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 101ed6 by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 101ed6 does this. So does 172zpi whose octave differs by only 0.4 ¢.

Approximation of harmonics in 101ed6
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.2 +2.2 -4.4 +8.5 +0.0 +9.5 -6.6 +4.4 +6.3 -5.1 -2.2
Relative (%) -7.2 +7.2 -14.4 +27.7 +0.0 +31.1 -21.6 +14.4 +20.5 -16.7 -7.2
Steps
(reduced)
39
(39)
62
(62)
78
(78)
91
(91)
101
(0)
110
(9)
117
(16)
124
(23)
130
(29)
135
(34)
140
(39)
Approximation of harmonics in 101ed6 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +12.8 +7.3 +10.7 -8.9 +9.0 +2.2 +0.7 +4.1 +11.8 -7.4 +7.8 -4.4
Relative (%) +41.6 +23.9 +34.9 -28.9 +29.4 +7.2 +2.4 +13.3 +38.3 -24.0 +25.5 -14.4
Steps
(reduced)
145
(44)
149
(48)
153
(52)
156
(55)
160
(59)
163
(62)
166
(65)
169
(68)
172
(71)
174
(73)
177
(76)
179
(78)

2.3.5.11 WE

39et, 2.3.5.11 WE tuning
  • Step size: 30.703 ¢, octave size: NNN ¢

_ing the octave of 39edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 2.3.5.11 WE tuning and 2.3.5.11 TE tuning both do this.

Approximation of harmonics in 39et, 2.3.5.11 WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.6 +1.6 -5.2 +7.7 -1.0 +8.5 -7.7 +3.3 +5.1 -6.4 -3.5
Relative (%) -8.4 +5.3 -16.8 +24.9 -3.1 +27.7 -25.2 +10.6 +16.5 -20.9 -11.5
Step 39 62 78 91 101 110 117 124 130 135 140
Approximation of harmonics in 39et, 2.3.5.11 WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +11.4 +5.9 +9.3 -10.3 +7.5 +0.7 -0.8 +2.5 +10.1 -9.0 +6.2 -6.1
Relative (%) +37.2 +19.3 +30.3 -33.7 +24.5 +2.2 -2.7 +8.1 +33.0 -29.3 +20.1 -19.9
Step 145 149 153 156 160 163 166 169 172 174 177 179

173zpi

173zpi
  • Step size: 30.672 ¢, octave size: NNN ¢

_ing the octave of 39edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 173zpi does this. So does 62edt whose octave differs by only 0.2 ¢.

Approximation of harmonics in 173zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.8 -0.3 -7.6 +4.8 -4.1 +5.1 -11.4 -0.6 +1.0 -10.6 -7.9
Relative (%) -12.4 -0.9 -24.7 +15.8 -13.3 +16.6 -37.1 -1.9 +3.4 -34.6 -25.7
Step 39 62 78 91 101 110 117 124 130 135 140
Approximation of harmonics in 173zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +6.9 +1.3 +4.5 -15.2 +2.6 -4.4 -6.0 -2.7 +4.8 -14.4 +0.7 -11.7
Relative (%) +22.5 +4.2 +14.8 -49.5 +8.4 -14.3 -19.4 -9.0 +15.7 -46.9 +2.2 -38.0
Step 145 149 153 156 160 163 166 169 172 174 177 179


110ed7

110ed7
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 39edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 110ed7 does this. So does 145ed13 whose octave differs by only 0.1 ¢.

Approximation of harmonics in 110ed7
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.6 -3.2 -11.2 +0.6 -8.8 +0.0 +13.8 -6.3 -5.0 +13.8 -14.4
Relative (%) -18.3 -10.3 -36.6 +2.0 -28.6 +0.0 +45.2 -20.7 -16.2 +45.0 -46.9
Steps
(reduced)
39
(39)
62
(62)
78
(78)
91
(91)
101
(101)
110
(0)
118
(8)
124
(14)
130
(20)
136
(26)
140
(30)
Approximation of harmonics in 110ed7 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +0.2 -5.6 -2.5 +8.2 -4.8 -11.9 -13.6 -10.6 -3.2 +8.2 -7.5 +10.7
Relative (%) +0.6 -18.3 -8.3 +26.9 -15.8 -38.9 -44.6 -34.5 -10.3 +26.7 -24.6 +34.8
Steps
(reduced)
145
(35)
149
(39)
153
(43)
157
(47)
160
(50)
163
(53)
166
(56)
169
(59)
172
(62)
175
(65)
177
(67)
180
(70)


91ed5

91ed5
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 39edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 91ed5 does this.

Approximation of harmonics in 91ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.9 -3.6 -11.7 +0.0 -9.5 -0.8 +13.0 -7.2 -5.9 +12.8 +15.3
Relative (%) -19.2 -11.7 -38.3 +0.0 -30.9 -2.5 +42.5 -23.4 -19.2 +41.9 +50.0
Steps
(reduced)
39
(39)
62
(62)
78
(78)
91
(0)
101
(10)
110
(19)
118
(27)
124
(33)
130
(39)
136
(45)
141
(50)
Approximation of harmonics in 91ed5 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -0.8 -6.6 -3.6 +7.2 -5.9 -13.0 -14.8 -11.7 -4.3 +7.0 -8.7 +9.4
Relative (%) -2.6 -21.6 -11.7 +23.4 -19.4 -42.6 -48.3 -38.3 -14.2 +22.8 -28.5 +30.8
Steps
(reduced)
145
(54)
149
(58)
153
(62)
157
(66)
160
(69)
163
(72)
166
(75)
169
(78)
172
(81)
175
(84)
177
(86)
180
(89)

Title2

Lab

Place holder








Approximation of prime harmonics in 1ed300c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0 -102 -86 -69 +49 +59 -105 +2 -28 -130 +55
Relative (%) +0.0 -34.0 -28.8 -22.9 +16.2 +19.8 -35.0 +0.8 -9.4 -43.2 +18.3
Step 4 6 9 11 14 15 16 17 18 19 20


Approximation of prime harmonics in 140ed12
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.6 +3.2 +10.0 +11.3 -3.0 +15.1 +11.6 +3.4 +10.6 +8.8 -14.5
Relative (%) -5.2 +10.4 +32.4 +36.7 -9.8 +49.0 +37.6 +11.0 +34.6 +28.6 -47.1
Steps
(reduced)
39
(39)
62
(62)
91
(91)
110
(110)
135
(135)
145
(5)
160
(20)
166
(26)
177
(37)
190
(50)
193
(53)

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

39edo

  • 171zpi (30.973c) (optimised for dual-fifths use)
  • 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2 ¢)
  • 101ed6 (octave of 172zpi differs by only 0.4 ¢)
  • 173zpi (30.672c) (octave of 62edt differs by only 0.2 ¢)
  • 110ed7 (octave of 145ed13 differs by only 0.1 ¢)
  • 91ed5

45edo

  • 209zpi (26.550)
  • 13-limit WE (26.695c)
  • 161ed12
  • 116ed6 (octave identical to 126ed7 within 0.1 ¢)
  • 7-limit WE (26.745c)
  • 207zpi (26.762)
  • 71edt (octave identical to 155ed11 within 0.3 ¢)

54edo

  • 139ed6 (octave is identical to 262zpi within 0.2 ¢)
  • 151ed7
  • 193ed12
  • 263zpi (22.243c)
  • 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1 ¢)
  • 264zpi (22.175c) (octave is identical to 194ed12 within 0.01 ¢)
  • 152ed7
  • 140ed6
  • 126ed5 (octave is identical to 86edt within 0.1 ¢)

64edo

  • 179ed7 (octave is identical to 326zpi within 0.3 ¢)
  • 165ed6
  • 229ed12 (octave is identical to 221ed11 within 0.1 ¢)
  • 327zpi (18.767c)
  • 11-limit WE (18.755c)

pure octaves 64edo (octave is identical to 13-limit WE within 0.13 ¢

  • 328zpi (18.721c)
  • 180ed7
  • 230ed12
  • 149ed5

42edo (reduce # of edonoi)

  • 108ed6 (octave is identical to 97ed5 within 0.1 ¢)
  • 189zpi (28.689c)
  • 150ed12
  • 145ed11

190zpi's octave is within 0.05 ¢ of pure-octaves 42edo

  • 118ed7
  • 13-limit WE (28.534c)
  • 151ed12 (octave is identical to 7-limit WE within 0.3 ¢)
  • 109ed6
  • 191zpi (28.444c)
  • 67edt

59edo (reduce # of edonoi or zpi)

  • 152ed6
  • 294zpi (20.399c)
  • 211ed12
  • 295zpi (20.342c)

pure octaves 59edo octave is identical to 137ed5 within 0.05 ¢

  • 13-limit WE (20.320c)
  • 7-limit WE (20.301c)
  • 166ed7
  • 212ed12
  • 296zpi (20.282c)
  • 153ed6
Medium priority

118edo (choose ZPIS)

Approximation of harmonics in 118edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -0.26 +0.00 +0.13 -0.26 -2.72 +0.00 -0.52 +0.13 -2.17 -0.26 +3.54
Relative (%) +0.0 -2.6 +0.0 +1.2 -2.6 -26.8 +0.0 -5.1 +1.2 -21.3 -2.6 +34.8
Steps
(reduced)
118
(0)
187
(69)
236
(0)
274
(38)
305
(69)
331
(95)
354
(0)
374
(20)
392
(38)
408
(54)
423
(69)
437
(83)
  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

13edo

Approximation of harmonics in 13edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +36.5 +0.0 -17.1 +36.5 -45.7 +0.0 -19.3 -17.1 +2.5 +36.5 -9.8
Relative (%) +0.0 +39.5 +0.0 -18.5 +39.5 -49.6 +0.0 -20.9 -18.5 +2.7 +39.5 -10.6
Steps
(reduced)
13
(0)
21
(8)
26
(0)
30
(4)
34
(8)
36
(10)
39
(0)
41
(2)
43
(4)
45
(6)
47
(8)
48
(9)
  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

103edo (narrow down edonoi, choose ZPIS)

Approximation of harmonics in 103edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -2.93 +0.00 -1.85 -2.93 -1.84 +0.00 +5.80 -1.85 -3.75 -2.93 -1.69
Relative (%) +0.0 -25.1 +0.0 -15.9 -25.1 -15.8 +0.0 +49.8 -15.9 -32.1 -25.1 -14.5
Steps
(reduced)
103
(0)
163
(60)
206
(0)
239
(33)
266
(60)
289
(83)
309
(0)
327
(18)
342
(33)
356
(47)
369
(60)
381
(72)
  • 163edt
  • 239ed5
  • 266ed6
  • 289ed7
  • 356ed11
  • 369ed12
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

111edo (choose ZPIS)

Approximation of harmonics in 111edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 +0.75 +0.00 +2.88 +0.75 +4.15 +0.00 +1.50 +2.88 +0.03 +0.75 +2.72
Relative (%) +0.0 +6.9 +0.0 +26.6 +6.9 +38.4 +0.0 +13.8 +26.6 +0.3 +6.9 +25.1
Steps
(reduced)
111
(0)
176
(65)
222
(0)
258
(36)
287
(65)
312
(90)
333
(0)
352
(19)
369
(36)
384
(51)
398
(65)
411
(78)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Low priority

104edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

152edo

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Optional

25edo

Approximation of harmonics in 25edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -2.3 +18.0 -8.8 +0.0 -11.9 -2.3 -23.3 +18.0 +23.5
Relative (%) +0.0 +37.6 +0.0 -4.8 +37.6 -18.4 +0.0 -24.8 -4.8 -48.6 +37.6 +48.9
Steps
(reduced)
25
(0)
40
(15)
50
(0)
58
(8)
65
(15)
70
(20)
75
(0)
79
(4)
83
(8)
86
(11)
90
(15)
93
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

Approximation of harmonics in 26edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -9.6 +0.0 -17.1 -9.6 +0.4 +0.0 -19.3 -17.1 +2.5 -9.6 -9.8
Relative (%) +0.0 -20.9 +0.0 -37.0 -20.9 +0.9 +0.0 -41.8 -37.0 +5.5 -20.9 -21.1
Steps
(reduced)
26
(0)
41
(15)
52
(0)
60
(8)
67
(15)
73
(21)
78
(0)
82
(4)
86
(8)
90
(12)
93
(15)
96
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

Approximation of harmonics in 29edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +1.5 +0.0 -13.9 +1.5 -17.1 +0.0 +3.0 -13.9 -13.4 +1.5 -12.9
Relative (%) +0.0 +3.6 +0.0 -33.6 +3.6 -41.3 +0.0 +7.2 -33.6 -32.4 +3.6 -31.3
Steps
(reduced)
29
(0)
46
(17)
58
(0)
67
(9)
75
(17)
81
(23)
87
(0)
92
(5)
96
(9)
100
(13)
104
(17)
107
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

Approximation of harmonics in 30edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 -3.9 +13.7 +8.7 +18.0 -0.5
Relative (%) +0.0 +45.1 +0.0 +34.2 +45.1 -22.1 +0.0 -9.8 +34.2 +21.7 +45.1 -1.3
Steps
(reduced)
30
(0)
48
(18)
60
(0)
70
(10)
78
(18)
84
(24)
90
(0)
95
(5)
100
(10)
104
(14)
108
(18)
111
(21)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

Approximation of harmonics in 34edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +3.9 +0.0 +1.9 +3.9 -15.9 +0.0 +7.9 +1.9 +13.4 +3.9 +6.5
Relative (%) +0.0 +11.1 +0.0 +5.4 +11.1 -45.0 +0.0 +22.3 +5.4 +37.9 +11.1 +18.5
Steps
(reduced)
34
(0)
54
(20)
68
(0)
79
(11)
88
(20)
95
(27)
102
(0)
108
(6)
113
(11)
118
(16)
122
(20)
126
(24)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

Approximation of harmonics in 35edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -9.2 -16.2 -8.8 +0.0 +1.8 -9.2 -2.7 -16.2 +16.6
Relative (%) +0.0 -47.4 +0.0 -26.7 -47.4 -25.7 +0.0 +5.3 -26.7 -8.0 -47.4 +48.5
Steps
(reduced)
35
(0)
55
(20)
70
(0)
81
(11)
90
(20)
98
(28)
105
(0)
111
(6)
116
(11)
121
(16)
125
(20)
130
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

Approximation of harmonics in 36edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -2.2 +0.0 -3.9 +13.7 +15.3 -2.0 -7.2
Relative (%) +0.0 -5.9 +0.0 +41.1 -5.9 -6.5 +0.0 -11.7 +41.1 +46.0 -5.9 -21.6
Steps
(reduced)
36
(0)
57
(21)
72
(0)
84
(12)
93
(21)
101
(29)
108
(0)
114
(6)
120
(12)
125
(17)
129
(21)
133
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

Approximation of harmonics in 37edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +11.6 +0.0 +2.9 +11.6 +4.1 +0.0 -9.3 +2.9 +0.0 +11.6 +2.7
Relative (%) +0.0 +35.6 +0.0 +8.9 +35.6 +12.8 +0.0 -28.7 +8.9 +0.1 +35.6 +8.4
Steps
(reduced)
37
(0)
59
(22)
74
(0)
86
(12)
96
(22)
104
(30)
111
(0)
117
(6)
123
(12)
128
(17)
133
(22)
137
(26)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

Approximation of harmonics in 9edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -35.3 +0.0 +13.7 -35.3 -35.5 +0.0 +62.8 +13.7 -18.0 -35.3 -40.5
Relative (%) +0.0 -26.5 +0.0 +10.3 -26.5 -26.6 +0.0 +47.1 +10.3 -13.5 -26.5 -30.4
Steps
(reduced)
9
(0)
14
(5)
18
(0)
21
(3)
23
(5)
25
(7)
27
(0)
29
(2)
30
(3)
31
(4)
32
(5)
33
(6)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

10edo

Approximation of harmonics in 10edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 +36.1 -26.3 +48.7 +18.0 -0.5
Relative (%) +0.0 +15.0 +0.0 -21.9 +15.0 -7.4 +0.0 +30.1 -21.9 +40.6 +15.0 -0.4
Steps
(reduced)
10
(0)
16
(6)
20
(0)
23
(3)
26
(6)
28
(8)
30
(0)
32
(2)
33
(3)
35
(5)
36
(6)
37
(7)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

Approximation of harmonics in 11edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -47.4 +0.0 +50.0 -47.4 +13.0 +0.0 +14.3 +50.0 -5.9 -47.4 +32.2
Relative (%) +0.0 -43.5 +0.0 +45.9 -43.5 +11.9 +0.0 +13.1 +45.9 -5.4 -43.5 +29.5
Steps
(reduced)
11
(0)
17
(6)
22
(0)
26
(4)
28
(6)
31
(9)
33
(0)
35
(2)
37
(4)
38
(5)
39
(6)
41
(8)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

Approximation of harmonics in 15edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 +36.1 +13.7 +8.7 +18.0 +39.5
Relative (%) +0.0 +22.6 +0.0 +17.1 +22.6 -11.0 +0.0 +45.1 +17.1 +10.9 +22.6 +49.3
Steps
(reduced)
15
(0)
24
(9)
30
(0)
35
(5)
39
(9)
42
(12)
45
(0)
48
(3)
50
(5)
52
(7)
54
(9)
56
(11)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

Approximation of harmonics in 18edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +31.4 +0.0 +13.7 +31.4 +31.2 +0.0 -3.9 +13.7 -18.0 +31.4 +26.1
Relative (%) +0.0 +47.1 +0.0 +20.5 +47.1 +46.8 +0.0 -5.9 +20.5 -27.0 +47.1 +39.2
Steps
(reduced)
18
(0)
29
(11)
36
(0)
42
(6)
47
(11)
51
(15)
54
(0)
57
(3)
60
(6)
62
(8)
65
(11)
67
(13)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

48edo

Approximation of harmonics in 48edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 -11.3 -2.0 +6.2 +0.0 -3.9 -11.3 -1.3 -2.0 +9.5
Relative (%) +0.0 -7.8 +0.0 -45.3 -7.8 +24.7 +0.0 -15.6 -45.3 -5.3 -7.8 +37.9
Steps
(reduced)
48
(0)
76
(28)
96
(0)
111
(15)
124
(28)
135
(39)
144
(0)
152
(8)
159
(15)
166
(22)
172
(28)
178
(34)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

Approximation of harmonics in 5edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0 +18 +0 +94 +18 -9 +0 +36 +94 -71 +18 +119
Relative (%) +0.0 +7.5 +0.0 +39.0 +7.5 -3.7 +0.0 +15.0 +39.0 -29.7 +7.5 +49.8
Steps
(reduced)
5
(0)
8
(3)
10
(0)
12
(2)
13
(3)
14
(4)
15
(0)
16
(1)
17
(2)
17
(2)
18
(3)
19
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

Approximation of harmonics in 6edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +98.0 +0.0 +13.7 +98.0 +31.2 +0.0 -3.9 +13.7 +48.7 +98.0 -40.5
Relative (%) +0.0 +49.0 +0.0 +6.8 +49.0 +15.6 +0.0 -2.0 +6.8 +24.3 +49.0 -20.3
Steps
(reduced)
6
(0)
10
(4)
12
(0)
14
(2)
16
(4)
17
(5)
18
(0)
19
(1)
20
(2)
21
(3)
22
(4)
22
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

20edo

Approximation of harmonics in 20edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 -23.9 -26.3 -11.3 +18.0 -0.5
Relative (%) +0.0 +30.1 +0.0 -43.9 +30.1 -14.7 +0.0 -39.9 -43.9 -18.9 +30.1 -0.9
Steps
(reduced)
20
(0)
32
(12)
40
(0)
46
(6)
52
(12)
56
(16)
60
(0)
63
(3)
66
(6)
69
(9)
72
(12)
74
(14)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

Approximation of harmonics in 24edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -18.8 +0.0 -3.9 +13.7 -1.3 -2.0 +9.5
Relative (%) +0.0 -3.9 +0.0 +27.4 -3.9 -37.7 +0.0 -7.8 +27.4 -2.6 -3.9 +18.9
Steps
(reduced)
24
(0)
38
(14)
48
(0)
56
(8)
62
(14)
67
(19)
72
(0)
76
(4)
80
(8)
83
(11)
86
(14)
89
(17)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

28edo

Approximation of harmonics in 28edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -0.6 -16.2 +16.9 +0.0 +10.4 -0.6 +5.8 -16.2 +16.6
Relative (%) +0.0 -37.9 +0.0 -1.4 -37.9 +39.4 +0.0 +24.2 -1.4 +13.6 -37.9 +38.8
Steps
(reduced)
28
(0)
44
(16)
56
(0)
65
(9)
72
(16)
79
(23)
84
(0)
89
(5)
93
(9)
97
(13)
100
(16)
104
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)