User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 23: | Line 23: | ||
{{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} | {{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} | ||
; [[ | ; [[207ed12]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal| | {{Harmonics in equal|207|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal| | {{Harmonics in equal|207|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
; [[150ed6]] | ; [[150ed6]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1199.42{{c}} | ||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
Line 54: | Line 36: | ||
; [[92edt]] | ; [[92edt]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1199.06{{c}} | ||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | {{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]] | |||
* Step size: 20.666{{c}}, octave size: 1198.63{{c}} | |||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. The tuning 289zpi also does this, it's octave differing from 7-limit WE by only 0.06{{c}}. | |||
{{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | |||
{{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | |||
; [[WE|58et, 13-limit WE tuning]] | |||
* Step size: 20.663{{c}}, octave size: 1198.45{{c}} | |||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, 13-limit WE tuning}} | |||
{{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, 13-limit WE tuning (continued)}} |
Revision as of 23:35, 26 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly compressing the octave is acceptable, using tunings such as 92edt or 150ed6.
What follows is a comparison of stretched- and compressed-octave 58edo tunings.
- Step size: 20.736 ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.69 | +5.76 | +5.38 | -7.69 | +8.44 | -9.59 | +8.06 | -9.22 | -5.00 | -4.12 | -9.60 |
Relative (%) | +13.0 | +27.8 | +25.9 | -37.1 | +40.7 | -46.3 | +38.9 | -44.5 | -24.1 | -19.9 | -46.3 | |
Step | 58 | 92 | 116 | 134 | 150 | 162 | 174 | 183 | 192 | 200 | 207 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.02 | -6.91 | -1.93 | -9.98 | +9.48 | -6.53 | +3.54 | -2.31 | -3.84 | -1.43 | +4.56 | -6.92 |
Relative (%) | -14.6 | -33.3 | -9.3 | -48.1 | +45.7 | -31.5 | +17.1 | -11.2 | -18.5 | -6.9 | +22.0 | -33.3 | |
Step | 214 | 220 | 226 | 231 | 237 | 241 | 246 | 250 | 254 | 258 | 262 | 265 |
- 58edo
- Step size: 20.690 ¢, octave size: NNN ¢
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +1.49 | +0.00 | +6.79 | +1.49 | +3.59 | +0.00 | +2.99 | +6.79 | +7.30 | +1.49 |
Relative (%) | +0.0 | +7.2 | +0.0 | +32.8 | +7.2 | +17.3 | +0.0 | +14.4 | +32.8 | +35.3 | +7.2 | |
Steps (reduced) |
58 (0) |
92 (34) |
116 (0) |
135 (19) |
150 (34) |
163 (47) |
174 (0) |
184 (10) |
193 (19) |
201 (27) |
208 (34) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.75 | +3.59 | +8.28 | +0.00 | -1.51 | +2.99 | -7.86 | +6.79 | +5.08 | +7.30 | -7.58 | +1.49 |
Relative (%) | +37.4 | +17.3 | +40.0 | +0.0 | -7.3 | +14.4 | -38.0 | +32.8 | +24.6 | +35.3 | -36.7 | +7.2 | |
Steps (reduced) |
215 (41) |
221 (47) |
227 (53) |
232 (0) |
237 (5) |
242 (10) |
246 (14) |
251 (19) |
255 (23) |
259 (27) |
262 (30) |
266 (34) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.38 | +10.02 | -10.02 | -1.47 | -5.38 | -2.08 | -4.65 | -0.73 | +3.91 | +5.16 | +0.00 |
Relative (%) | +25.9 | +48.2 | -48.2 | -7.1 | -25.9 | -10.0 | -22.4 | -3.5 | +18.8 | +24.8 | +0.0 | |
Steps (reduced) |
58 (58) |
92 (92) |
115 (115) |
134 (134) |
149 (149) |
162 (162) |
173 (173) |
183 (183) |
192 (192) |
200 (200) |
207 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.90 | +3.30 | +8.55 | +0.73 | -0.31 | +4.65 | -5.83 | +9.28 | +7.95 | -10.24 | -4.07 | +5.38 |
Relative (%) | +33.2 | +15.9 | +41.1 | +3.5 | -1.5 | +22.4 | -28.0 | +44.7 | +38.2 | -49.3 | -19.6 | +25.9 | |
Steps (reduced) |
214 (7) |
220 (13) |
226 (19) |
231 (24) |
236 (29) |
241 (34) |
245 (38) |
250 (43) |
254 (47) |
257 (50) |
261 (54) |
265 (58) |
- Step size: NNN ¢, octave size: 1199.42 ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.58 | +0.58 | -1.15 | +5.45 | +0.00 | +1.97 | -1.73 | +1.15 | +4.87 | +5.30 | -0.58 |
Relative (%) | -2.8 | +2.8 | -5.6 | +26.3 | +0.0 | +9.5 | -8.4 | +5.6 | +23.5 | +25.6 | -2.8 | |
Steps (reduced) |
58 (58) |
92 (92) |
116 (116) |
135 (135) |
150 (0) |
163 (13) |
174 (24) |
184 (34) |
193 (43) |
201 (51) |
208 (58) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.61 | +1.39 | +6.02 | -2.31 | -3.87 | +0.58 | -10.31 | +4.29 | +2.54 | +4.72 | -10.19 | -1.15 |
Relative (%) | +27.1 | +6.7 | +29.1 | -11.2 | -18.7 | +2.8 | -49.8 | +20.7 | +12.3 | +22.8 | -49.3 | -5.6 | |
Steps (reduced) |
215 (65) |
221 (71) |
227 (77) |
232 (82) |
237 (87) |
242 (92) |
246 (96) |
251 (101) |
255 (105) |
259 (109) |
262 (112) |
266 (116) |
- Step size: NNN ¢, octave size: 1199.06 ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.94 | +0.00 | -1.88 | +4.60 | -0.94 | +0.94 | -2.82 | +0.00 | +3.66 | +4.04 | -1.88 |
Relative (%) | -4.6 | +0.0 | -9.1 | +22.2 | -4.6 | +4.6 | -13.7 | +0.0 | +17.7 | +19.5 | -9.1 | |
Steps (reduced) |
58 (58) |
92 (0) |
116 (24) |
135 (43) |
150 (58) |
163 (71) |
174 (82) |
184 (0) |
193 (9) |
201 (17) |
208 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.26 | +0.00 | +4.60 | -3.77 | -5.35 | -0.94 | +8.82 | +2.72 | +0.94 | +3.10 | +8.84 | -2.82 |
Relative (%) | +20.6 | +0.0 | +22.2 | -18.2 | -25.9 | -4.6 | +42.7 | +13.1 | +4.6 | +15.0 | +42.7 | -13.7 | |
Steps (reduced) |
215 (31) |
221 (37) |
227 (43) |
232 (48) |
237 (53) |
242 (58) |
247 (63) |
251 (67) |
255 (71) |
259 (75) |
263 (79) |
266 (82) |
- Step size: 20.666 ¢, octave size: 1198.63 ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 7-limit WE tuning and 7-limit TE tuning both do this. The tuning 289zpi also does this, it's octave differing from 7-limit WE by only 0.06 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.37 | -0.68 | -2.74 | +3.60 | -2.06 | -0.27 | -4.12 | -1.37 | +2.22 | +2.55 | -3.43 |
Relative (%) | -6.6 | -3.3 | -13.3 | +17.4 | -9.9 | -1.3 | -19.9 | -6.6 | +10.8 | +12.3 | -16.6 | |
Step | 58 | 92 | 116 | 135 | 150 | 163 | 174 | 184 | 193 | 201 | 208 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.66 | -1.64 | +2.91 | -5.49 | -7.11 | -2.74 | +6.99 | +0.85 | -0.95 | +1.18 | +6.88 | -4.80 |
Relative (%) | +12.9 | -7.9 | +14.1 | -26.6 | -34.4 | -13.2 | +33.8 | +4.1 | -4.6 | +5.7 | +33.3 | -23.2 | |
Step | 215 | 221 | 227 | 232 | 237 | 242 | 247 | 251 | 255 | 259 | 263 | 266 |
- Step size: 20.663 ¢, octave size: 1198.45 ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.55 | -0.96 | -3.09 | +3.19 | -2.51 | -0.76 | -4.64 | -1.92 | +1.65 | +1.95 | -4.05 |
Relative (%) | -7.5 | -4.6 | -15.0 | +15.4 | -12.1 | -3.7 | -22.4 | -9.3 | +8.0 | +9.4 | -19.6 | |
Step | 58 | 92 | 116 | 135 | 150 | 163 | 174 | 184 | 193 | 201 | 208 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.02 | -2.30 | +2.23 | -6.18 | -7.82 | -3.46 | +6.25 | +0.10 | -1.72 | +0.40 | +6.09 | -5.60 |
Relative (%) | +9.8 | -11.1 | +10.8 | -29.9 | -37.9 | -16.8 | +30.2 | +0.5 | -8.3 | +1.9 | +29.5 | -27.1 | |
Step | 215 | 221 | 227 | 232 | 237 | 242 | 247 | 251 | 255 | 259 | 263 | 266 |