8ed6: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Created page with "{{Infobox ET}} {{ED intro}} == Intervals == {| class="wikitable" |+ !# !Cents !Approximate JI ratio(s) |- |0 |0.000 |exact 1/1 |- |1 |387.744 |5/4, 4/3, 6/5, 7/6, 9/7, 10/7, 9/8, 11/9, 11/10, 12/11 |- |2 |775.489 |3/2, 11/7 |- |3 |1163.233 |2/1 |- |4 |1550.978 |5/2, 7/3 |- |5 |1938.722 |3/1 |- |6 |2326.466 |4/1 |- |7 |2714.211 |5/1 |- |8 |3101.955 |exact 6/1 |} == Harmonics == {| class="wikitable" |+ !# !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 |- |Steps |3 |5 |6 |7 |8 |9..."
Tags: Visual edit Mobile edit Mobile web edit
 
ArrowHead294 (talk | contribs)
m Formatting
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{ED intro}}  
{{ED intro}}  


== Intervals ==
== Intervals ==
{| class="wikitable"
{| class="wikitable"
|+
!#
!Cents
!Approximate JI ratio(s)
|-
|-
|0
! #
|0.000
! Cents
|exact 1/1
! Approximate JI ratio(s)
|-
|-
|1
| 0
|387.744
| 0.000
|5/4, 4/3, 6/5, 7/6, 9/7, 10/7, 9/8, 11/9, 11/10, 12/11
| exact 1/1
|-
|-
|2
| 1
|775.489
| 387.744
|3/2, 11/7
| 5/4, 4/3, 6/5, 7/6, 9/7, 10/7, 9/8, 11/9, 11/10, 12/11
|-
|-
|3
| 2
|1163.233
| 775.489
|2/1
| 3/2, 11/7
|-
|-
|4
| 3
|1550.978
| 1163.233
|5/2, 7/3
| 2/1
|-
|-
|5
| 4
|1938.722
| 1550.978
|3/1
| 5/2, 7/3
|-
|-
|6
| 5
|2326.466
| 1938.722
|4/1
| 3/1
|-
|-
|7
| 6
|2714.211
| 2326.466
|5/1
| 4/1
|-
|-
|8
| 7
|3101.955
| 2714.211
|exact 6/1
| 5/1
|-
| 8
| 3101.955
| exact 6/1
|}
|}


== Harmonics ==
== Harmonics ==
{| class="wikitable"
{| class="wikitable"
|+
!#
!2
!3
!4
!5
!6
!7
!8
!9
!10
!11
!12
|-
|-
|Steps
! #
|3
! 2
|5
! 3
|6
! 4
|7
! 5
|8
! 6
|9
! 7
|9
! 8
|10
! 9
|10
! 10
|11
! 11
|11
! 12
|-
| Steps
| 3
| 5
| 6
| 7
| 8
| 9
| 9
| 10
| 10
| 11
| 11
|-
|-
|Reduced
| Reduced
|3
| 3
|5
| 5
|6
| 6
|7
| 7
|0
| 0
|1
| 1
|1
| 1
|2
| 2
|2
| 2
|3
| 3
|3
| 3
|}
|}

Revision as of 17:23, 15 July 2025

← 7ed6 8ed6 9ed6 →
Prime factorization 23
Step size 387.744 ¢ 
Octave 3\8ed6 (1163.23 ¢)
(semiconvergent)
Twelfth 5\8ed6 (1938.72 ¢)
(semiconvergent)
Consistency limit 6
Distinct consistency limit 4

8 equal divisions of the 6th harmonic (abbreviated 8ed6) is a nonoctave tuning system that divides the interval of 6/1 into 8 equal parts of about 388 ¢ each. Each step represents a frequency ratio of 61/8, or the 8th root of 6.

Intervals

# Cents Approximate JI ratio(s)
0 0.000 exact 1/1
1 387.744 5/4, 4/3, 6/5, 7/6, 9/7, 10/7, 9/8, 11/9, 11/10, 12/11
2 775.489 3/2, 11/7
3 1163.233 2/1
4 1550.978 5/2, 7/3
5 1938.722 3/1
6 2326.466 4/1
7 2714.211 5/1
8 3101.955 exact 6/1

Harmonics

# 2 3 4 5 6 7 8 9 10 11 12
Steps 3 5 6 7 8 9 9 10 10 11 11
Reduced 3 5 6 7 0 1 1 2 2 3 3