Rodan: Difference between revisions

m Undo revision 199718 by Lériendil (talk)
Tag: Undo
m No here-links
Line 14: Line 14:
'''Rodan''' is one of the notable [[extension]]s of the [[slendric]] [[regular temperament|temperament]], which divides [[3/2]] into three equal intervals representing [[8/7]] ([[tempering out]] the gamelisma, [[1029/1024]]), reaching the full [[7-limit]] such that 17 of these [[generators]] [[stacking|stack]] to reach the interval class of the [[5/1|5th harmonic]]. It tempers out [[245/243]], making it a [[sensamagic clan|sensamagic temperament]], so that [[5/3]] is divided into two intervals of [[9/7]]; and it tempers out [[5120/5103]], making it also a [[hemifamity temperaments|hemifamity temperament]], so that [[9/8]] stacks thrice into [[10/7]].
'''Rodan''' is one of the notable [[extension]]s of the [[slendric]] [[regular temperament|temperament]], which divides [[3/2]] into three equal intervals representing [[8/7]] ([[tempering out]] the gamelisma, [[1029/1024]]), reaching the full [[7-limit]] such that 17 of these [[generators]] [[stacking|stack]] to reach the interval class of the [[5/1|5th harmonic]]. It tempers out [[245/243]], making it a [[sensamagic clan|sensamagic temperament]], so that [[5/3]] is divided into two intervals of [[9/7]]; and it tempers out [[5120/5103]], making it also a [[hemifamity temperaments|hemifamity temperament]], so that [[9/8]] stacks thrice into [[10/7]].


Unlike [[mothra]], which flattens the fifth to a [[meantone]] fifth, the fifth of rodan is slightly sharp of just, ranging from that of [[41edo]] to that of [[46edo]] (with [[87edo]] being an essentially optimal tuning). As a result, the [[256/243|diatonic minor second]] is compressed, and the interval known as the [[quark]], which represents [[49/48]], [[64/63]], and in rodan also [[81/80]], is even smaller than it is in tunings of slendric with a nearly just fifth. This entails that the [[MOS scale]]s of rodan [[cluster MOS|cluster]] even more strongly around [[5edo]], although this can be thought of as an advantage in that ([[#As a detemperament of 5et|as described here]]) it simplifies the conceptualization of rodan's inventory of intervals. Rather than directly using MOS scales, which are either extremely imbalanced or overly large, an approach to rodan may involve picking and choosing which intervals from each [[pentatonic]] category to keep in the scale.
Unlike [[mothra]], which flattens the fifth to a [[meantone]] fifth, the fifth of rodan is slightly sharp of just, ranging from that of [[41edo]] to that of [[46edo]] (with [[87edo]] being an essentially optimal tuning). As a result, the [[256/243|diatonic minor second]] is compressed, and the interval known as the [[quark]], which represents [[49/48]], [[64/63]], and in rodan also [[81/80]], is even smaller than it is in tunings of slendric with a nearly just fifth. This entails that the [[mos scale]]s of rodan [[cluster MOS|cluster]] even more strongly around [[5edo]], although this can be thought of as an advantage in that it simplifies the conceptualization of rodan's inventory of intervals (see [[#As a detemperament of 5et]]). Rather than directly using mos scales, which are either extremely imbalanced or overly large, an approach to rodan may involve picking and choosing which intervals from each [[pentatonic]] category to keep in the scale.


As can be elucidated by [[S-expression]]s, rodan is very much a "counterpart" to mothra: the basic equivalence of slendric tempers S7 (49/48) = S8 (64/63), and mothra proceeds to equate it to S6 ([[36/35]]) as well; meanwhile, rodan extends the equivalence in the opposite direction to add S9 (81/80) to it, making it one of the five [[rank-2 temperament]]s definable by equating three adjacent square superparticulars.
As can be elucidated by [[S-expression]]s, rodan is very much a "counterpart" to mothra: the basic equivalence of slendric tempers S7 (49/48) = S8 (64/63), and mothra proceeds to equate it to S6 ([[36/35]]) as well; meanwhile, rodan extends the equivalence in the opposite direction to add S9 (81/80) to it, making it one of the five [[rank-2 temperament]]s definable by equating three adjacent square superparticulars.