Bossier scales: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
The [[Bossier]] temperament is generated by a sharply tuned neogothic major third [[14/11]], such that two of them stack to [[13/8]], and the comma [[15488/15379]] is tempered out, which doesn't appear to have any intuitive interpretation in terms of stacking intervals. When its generator is used to build a MOS scale, the scales generated are [[3L 5s|checkertonic]], [[3L 8s]], and [[3L 11s]].
== 8-note scale ==
<pre>
<pre>
! bossier8.scl
! bossier8.scl
Line 14: Line 17:
2/1</pre>
2/1</pre>


== 11-note scale ==
[[Category:8-tone scales]]
[[Category:8-tone scales]]
[[Category:Tempered scales]]
[[Category:Tempered scales]]
Line 19: Line 23:
[[Category:Bossier]]
[[Category:Bossier]]
[[Category:Pages with Scala files]]
[[Category:Pages with Scala files]]
<pre>
! bossier11.scl
!
Bossier[11] 2.7.11.13 subgroup scale in 225et tuning
11
!
64.00000
128.00000
192.00000
421.33333
485.33333
549.33333
778.66667
842.66667
906.66667
970.66667
2/1</pre>
== 14-note scale ==
<pre>
! bossier14.scl
!
Bossier[14] 2.7.11.13 subgroup scale in 225et tuning
14
!
64.00000
128.00000
192.00000
357.33333
421.33333
485.33333
549.33333
613.33333
778.66667
842.66667
906.66667
970.66667
1136.00000
2/1
</pre>

Revision as of 18:39, 23 March 2025

The Bossier temperament is generated by a sharply tuned neogothic major third 14/11, such that two of them stack to 13/8, and the comma 15488/15379 is tempered out, which doesn't appear to have any intuitive interpretation in terms of stacking intervals. When its generator is used to build a MOS scale, the scales generated are checkertonic, 3L 8s, and 3L 11s.

8-note scale

! bossier8.scl
!
Bossier[8] 2.7.11.13 subgroup scale in 225et tuning
8
!
64.00000
128.00000
421.33333
485.33333
549.33333
842.66667
906.66667
2/1

11-note scale

! bossier11.scl
!
Bossier[11] 2.7.11.13 subgroup scale in 225et tuning
11
!
64.00000
128.00000
192.00000
421.33333
485.33333
549.33333
778.66667
842.66667
906.66667
970.66667
2/1

14-note scale


! bossier14.scl
!
Bossier[14] 2.7.11.13 subgroup scale in 225et tuning
14
!
64.00000
128.00000
192.00000
357.33333
421.33333
485.33333
549.33333
613.33333
778.66667
842.66667
906.66667
970.66667
1136.00000
2/1