List of MOS scales in 24edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) htiw egap detaerC |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{MOSes in EDO| | {{MOSes in EDO|debug=1}} | ||
Revision as of 14:36, 10 March 2025
This page lists all [[moment of symmetry]] scales in [[24edo]].
__TOC__
<h2>Single-period MOS scales</h2>
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 13\24 and 11\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├────────────┼──────────┤
| [[1L 1s]]
| 13, 11
| 13:11
|-
| ├─┼──────────┼──────────┤
| [[2L 1s]]
| 11, 2
| 11:2
|-
| ├─┼─┼────────┼─┼────────┤
| [[2L 3s]]
| 9, 2
| 9:2
|-
| ├─┼─┼─┼──────┼─┼─┼──────┤
| [[2L 5s]] (antidiatonic)
| 7, 2
| 7:2
|-
| ├─┼─┼─┼─┼────┼─┼─┼─┼────┤
| [[2L 7s]] (balzano)
| 5, 2
| 5:2
|-
| ├─┼─┼─┼─┼─┼──┼─┼─┼─┼─┼──┤
| [[2L 9s]]
| 3, 2
| 3:2
|-
| ├─┼─┼─┼─┼─┼─┼┼─┼─┼─┼─┼─┼┤
| [[11L 2s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 17\24 and 7\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├────────────────┼──────┤
| [[1L 1s]]
| 17, 7
| 17:7
|-
| ├─────────┼──────┼──────┤
| [[1L 2s]]
| 10, 7
| 10:7
|-
| ├──┼──────┼──────┼──────┤
| [[3L 1s]]
| 7, 3
| 7:3
|-
| ├──┼──┼───┼──┼───┼──┼───┤
| [[3L 4s]] (mosh)
| 4, 3
| 4:3
|-
| ├──┼──┼──┼┼──┼──┼┼──┼──┼┤
| [[7L 3s]] (dicoid)
| 3, 1
| 3:1
|-
| ├─┼┼─┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┼┼┤
| [[7L 10s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 19\24 and 5\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├──────────────────┼────┤
| [[1L 1s]]
| 19, 5
| 19:5
|-
| ├─────────────┼────┼────┤
| [[1L 2s]]
| 14, 5
| 14:5
|-
| ├────────┼────┼────┼────┤
| [[1L 3s]]
| 9, 5
| 9:5
|-
| ├───┼────┼────┼────┼────┤
| [[4L 1s]]
| 5, 4
| 5:4
|-
| ├───┼───┼┼───┼┼───┼┼───┼┤
| [[5L 4s]] (semiquartal)
| 4, 1
| 4:1
|-
| ├──┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┤
| [[5L 9s]]
| 3, 1
| 3:1
|-
| ├─┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
| [[5L 14s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 23\24 and 1\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├──────────────────────┼┤
| [[1L 1s]]
| 23, 1
| 23:1
|-
| ├─────────────────────┼┼┤
| [[1L 2s]]
| 22, 1
| 22:1
|-
| ├────────────────────┼┼┼┤
| [[1L 3s]]
| 21, 1
| 21:1
|-
| ├───────────────────┼┼┼┼┤
| [[1L 4s]]
| 20, 1
| 20:1
|-
| ├──────────────────┼┼┼┼┼┤
| [[1L 5s]] (antimachinoid)
| 19, 1
| 19:1
|-
| ├─────────────────┼┼┼┼┼┼┤
| [[1L 6s]] (onyx)
| 18, 1
| 18:1
|-
| ├────────────────┼┼┼┼┼┼┼┤
| [[1L 7s]] (antipine)
| 17, 1
| 17:1
|-
| ├───────────────┼┼┼┼┼┼┼┼┤
| [[1L 8s]] (antisubneutralic)
| 16, 1
| 16:1
|-
| ├──────────────┼┼┼┼┼┼┼┼┼┤
| [[1L 9s]] (antisinatonic)
| 15, 1
| 15:1
|-
| ├─────────────┼┼┼┼┼┼┼┼┼┼┤
| [[1L 10s]]
| 14, 1
| 14:1
|-
| ├────────────┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 11s]]
| 13, 1
| 13:1
|-
| ├───────────┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 12s]]
| 12, 1
| 12:1
|-
| ├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 13s]]
| 11, 1
| 11:1
|-
| ├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 14s]]
| 10, 1
| 10:1
|-
| ├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 15s]]
| 9, 1
| 9:1
|-
| ├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 16s]]
| 8, 1
| 8:1
|-
| ├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 17s]]
| 7, 1
| 7:1
|-
| ├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 18s]]
| 6, 1
| 6:1
|-
| ├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 19s]]
| 5, 1
| 5:1
|-
| ├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 20s]]
| 4, 1
| 4:1
|-
| ├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 21s]]
| 3, 1
| 3:1
|-
| ├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[1L 22s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
<h2>Multi-period MOS scales</h2>
<h3>2 periods</h3>
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 7\24 and 5\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├──────┼────┼──────┼────┤
| [[2L 2s]]
| 7, 5
| 7:5
|-
| ├─┼────┼────┼─┼────┼────┤
| [[4L 2s]] (citric)
| 5, 2
| 5:2
|-
| ├─┼─┼──┼─┼──┼─┼─┼──┼─┼──┤
| [[4L 6s]] (lime)
| 3, 2
| 3:2
|-
| ├─┼─┼─┼┼─┼─┼┼─┼─┼─┼┼─┼─┼┤
| [[10L 4s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 11\24 and 1\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├──────────┼┼──────────┼┤
| [[2L 2s]]
| 11, 1
| 11:1
|-
| ├─────────┼┼┼─────────┼┼┤
| [[2L 4s]] (malic)
| 10, 1
| 10:1
|-
| ├────────┼┼┼┼────────┼┼┼┤
| [[2L 6s]] (subaric)
| 9, 1
| 9:1
|-
| ├───────┼┼┼┼┼───────┼┼┼┼┤
| [[2L 8s]] (jaric)
| 8, 1
| 8:1
|-
| ├──────┼┼┼┼┼┼──────┼┼┼┼┼┤
| [[2L 10s]]
| 7, 1
| 7:1
|-
| ├─────┼┼┼┼┼┼┼─────┼┼┼┼┼┼┤
| [[2L 12s]]
| 6, 1
| 6:1
|-
| ├────┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┤
| [[2L 14s]]
| 5, 1
| 5:1
|-
| ├───┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┤
| [[2L 16s]]
| 4, 1
| 4:1
|-
| ├──┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┤
| [[2L 18s]]
| 3, 1
| 3:1
|-
| ├─┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┤
| [[2L 20s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
<h3>3 periods</h3>
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 5\24 and 3\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├────┼──┼────┼──┼────┼──┤
| [[3L 3s]] (triwood)
| 5, 3
| 5:3
|-
| ├─┼──┼──┼─┼──┼──┼─┼──┼──┤
| [[6L 3s]] (hyrulic)
| 3, 2
| 3:2
|-
| ├─┼─┼┼─┼┼─┼─┼┼─┼┼─┼─┼┼─┼┤
| [[9L 6s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 7\24 and 1\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├──────┼┼──────┼┼──────┼┤
| [[3L 3s]] (triwood)
| 7, 1
| 7:1
|-
| ├─────┼┼┼─────┼┼┼─────┼┼┤
| [[3L 6s]] (tcherepnin)
| 6, 1
| 6:1
|-
| ├────┼┼┼┼────┼┼┼┼────┼┼┼┤
| [[3L 9s]]
| 5, 1
| 5:1
|-
| ├───┼┼┼┼┼───┼┼┼┼┼───┼┼┼┼┤
| [[3L 12s]]
| 4, 1
| 4:1
|-
| ├──┼┼┼┼┼┼──┼┼┼┼┼┼──┼┼┼┼┼┤
| [[3L 15s]]
| 3, 1
| 3:1
|-
| ├─┼┼┼┼┼┼┼─┼┼┼┼┼┼┼─┼┼┼┼┼┼┤
| [[3L 18s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
<h3>4 periods</h3>
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 5\24 and 1\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├────┼┼────┼┼────┼┼────┼┤
| [[4L 4s]] (tetrawood)
| 5, 1
| 5:1
|-
| ├───┼┼┼───┼┼┼───┼┼┼───┼┼┤
| [[4L 8s]]
| 4, 1
| 4:1
|-
| ├──┼┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┤
| [[4L 12s]]
| 3, 1
| 3:1
|-
| ├─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┤
| [[4L 16s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
<h3>6 periods</h3>
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 3\24 and 1\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├──┼┼──┼┼──┼┼──┼┼──┼┼──┼┤
| [[6L 6s]]
| 3, 1
| 3:1
|-
| ├─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
| [[6L 12s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
<h3>8 periods</h3>
{| class="wikitable center-all"
|+ style="font-size: 105%; white-space: nowrap;" | Generators 2\24 and 1\24
|-
! Step visualization
! MOS (name)
! Step sizes
! Step ratio
|-
| ├─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
| [[8L 8s]]
| 2, 1
| 2:1
|-
| ├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
| [[24edo]]
| 1, 1
| 1:1
|}
[[Category:24edo]]
[[Category:Lists of scales]]
[[Category:MOS scales]]