Height: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Sarzadoce
**Imported revision 363105768 - Original comment: **
Wikispaces>Sarzadoce
**Imported revision 363321120 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2012-09-08 23:32:31 UTC</tt>.<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2012-09-10 01:32:24 UTC</tt>.<br>
: The original revision id was <tt>363105768</tt>.<br>
: The original revision id was <tt>363321120</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:=  
A **height** is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the positive rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.
A **Height** is a function on members of an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the positive rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.


A height function H(q) on the positive rationals q should fulfill the following criteria:
A height function H(q) on the positive rationals q should fulfill the following criteria:
Line 15: Line 15:
# H(q^n) &gt;= H(q) for any non-negative integer n
# H(q^n) &gt;= H(q) for any non-negative integer n


Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
[[math]]
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)
[[math]]


If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
An **Improper Height** is a function which does not obey criteria #1 above in the strictest sense, but instead requires an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:
[[math]]
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q
[[math]]
 
Or equivalently, if n has any integer solutions:
[[math]]
p = 2^n q
[[math]]
 
If the above condition is met, we may then establish the following equivalence relation:
[[math]]
[[math]]
H(q) \equiv F(H(q))
p \equiv q
[[math]]
[[math]]


=Examples:=  
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.
|| Name: || H(n/d) || H(q) || H(q) simplified by equivalence relation || Abstract ||
====== ======
=Examples of Height Functions:=  
|| __Name:__ || __Type:__ || __H(n/d):__ || __H(q):__ || __H(q) simplified by equivalence relation:__ ||
|| [[Benedetti Height|Benedetti height]]
|| [[Benedetti Height|Benedetti height]]
(or [[Tenney Height]]) || [[math]]
(or [[Tenney Height]]) || Proper || [[math]]
nd
n d
[[math]] || [[math]]
[[math]] || [[math]]
2^{T1(q)}
2^{T1 \left( {q} \right)}
[[math]] || [[math]]
[[math]] || [[math]]
T1(q)
T1 \left( {q} \right)
[[math]] || Complexity ||
[[math]] ||
|| Weil Height || [[math]]
|| Weil Height || Proper || [[math]]
max(n,d)
\max \left( {n , d} \right)
[[math]] || [[math]]
[[math]] || [[math]]
2^{(T1(q)+|log_2(q)|)/2}
\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)
[[math]] || [[math]]
[[math]] || [[math]]
T1(q)+|log_2(q)|
T1 \left( {q} \right) + | \log_2 \left( {q} \right) |
[[math]] || Complexity+|Span| ||
[[math]] ||
|| Arithmetic Height || [[math]]
|| Arithmetic Height || Proper || [[math]]
n+d
n + d
[[math]] || [[math]]
[[math]] || [[math]]
\frac{(q+1)}{\sqrt{q}}}2^{T1(q)/2}
\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)
[[math]] || [[math]]
[[math]] || [[math]]
T1(q)+2log_2(q+1)-log_2(q)
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)
[[math]] || Complexity+2(Tartini Tone Span)-Span ||
[[math]] ||
|| [[Kees Height]] || [[math]]
|| [[Kees Height]] || Improper || [[math]]
max(2^{-v_2(n)}n,
\max \left( {2^{-v_2 \left( {n} \right)} n ,  
2^{-v_2(d)}d)
2^{-v_2 \left( {d} \right)} d} \right)
[[math]] || [[math]]
[[math]] || [[math]]
2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)
[[math]] || [[math]]
[[math]] || [[math]]
T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
[[math]] || No-2's-Complexity+|No-2's-Span| ||
[[math]] ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.
Line 59: Line 74:
Some useful identities:
Some useful identities:
[[math]]
[[math]]
n=2^{(T1(q)+log_2(q))/2}
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)
[[math]]
[[math]]
[[math]]
[[math]]
d=2^{(T1(q)-log_2(q))/2}
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)
[[math]]
[[math]]
[[math]]
[[math]]
nd=2^{T1(q)}
n d = 2^{T1 \left( {q} \right)}
[[math]]</pre></div>
[[math]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Definition:&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:19:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:19 --&gt;Definition:&lt;/h1&gt;
  A &lt;strong&gt;height&lt;/strong&gt; is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the positive rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.&lt;br /&gt;
  A &lt;strong&gt;Height&lt;/strong&gt; is a function on members of an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the positive rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A height function H(q) on the positive rationals q should fulfill the following criteria:&lt;br /&gt;
A height function H(q) on the positive rationals q should fulfill the following criteria:&lt;br /&gt;
&lt;ol&gt;&lt;li&gt;Given any constant C, there are finitely many elements q such that H(q) &amp;lt;= C.&lt;/li&gt;&lt;li&gt;There is a unique constant K such that H(q) &amp;gt;= K, for all q.&lt;/li&gt;&lt;li&gt;H(q) = H(1/q)&lt;/li&gt;&lt;li&gt;H(q^n) &amp;gt;= H(q) for any non-negative integer n&lt;/li&gt;&lt;/ol&gt;&lt;br /&gt;
&lt;ol&gt;&lt;li&gt;Given any constant C, there are finitely many elements q such that H(q) &amp;lt;= C.&lt;/li&gt;&lt;li&gt;There is a unique constant K such that H(q) &amp;gt;= K, for all q.&lt;/li&gt;&lt;li&gt;H(q) = H(1/q)&lt;/li&gt;&lt;li&gt;H(q^n) &amp;gt;= H(q) for any non-negative integer n&lt;/li&gt;&lt;/ol&gt;&lt;br /&gt;
Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.&lt;br /&gt;
&lt;br /&gt;
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:&lt;br /&gt;
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
H(q) \equiv F(H(q))&amp;lt;br/&amp;gt;[[math]]
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;H(q) \equiv F(H(q))&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
An &lt;strong&gt;Improper Height&lt;/strong&gt; is a function which does not obey criteria #1 above in the strictest sense, but instead requires an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;br /&gt;
Or equivalently, if n has any integer solutions:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
p = 2^n q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;p = 2^n q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Examples:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Examples:&lt;/h1&gt;
If the above condition is met, we may then establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:3:
[[math]]&amp;lt;br/&amp;gt;
p \equiv q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;p \equiv q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
&lt;br /&gt;
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:21:&amp;lt;h6&amp;gt; --&gt;&lt;h6 id="toc1"&gt;&lt;!-- ws:end:WikiTextHeadingRule:21 --&gt; &lt;/h6&gt;
&lt;!-- ws:start:WikiTextHeadingRule:23:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Examples of Height Functions:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:23 --&gt;Examples of Height Functions:&lt;/h1&gt;
   
   


&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;Name:&lt;br /&gt;
         &lt;td&gt;&lt;u&gt;Name:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;H(n/d)&lt;br /&gt;
         &lt;td&gt;&lt;u&gt;Type:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;H(q)&lt;br /&gt;
         &lt;td&gt;&lt;u&gt;H(n/d):&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;H(q) simplified by equivalence relation&lt;br /&gt;
         &lt;td&gt;&lt;u&gt;H(q):&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Abstract&lt;br /&gt;
         &lt;td&gt;&lt;u&gt;H(q) simplified by equivalence relation:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 101: Line 134:
(or &lt;a class="wiki_link" href="/Tenney%20Height"&gt;Tenney Height&lt;/a&gt;)&lt;br /&gt;
(or &lt;a class="wiki_link" href="/Tenney%20Height"&gt;Tenney Height&lt;/a&gt;)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:1:
        &lt;td&gt;Proper&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:4:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
nd&amp;lt;br/&amp;gt;[[math]]
n d&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;nd&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:2:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:5:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
2^{T1(q)}&amp;lt;br/&amp;gt;[[math]]
2^{T1 \left( {q} \right)}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;2^{T1(q)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:5 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:3:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:6:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
T1(q)&amp;lt;br/&amp;gt;[[math]]
T1 \left( {q} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;T1(q)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;T1 \left( {q} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Complexity&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 122: Line 155:
         &lt;td&gt;Weil Height&lt;br /&gt;
         &lt;td&gt;Weil Height&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:4:
        &lt;td&gt;Proper&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
max(n,d)&amp;lt;br/&amp;gt;[[math]]
\max \left( {n , d} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;max(n,d)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\max \left( {n , d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:5:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:8:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
2^{(T1(q)+|log_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;2^{(T1(q)+|log_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:5 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:6:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:9:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
T1(q)+|log_2(q)|&amp;lt;br/&amp;gt;[[math]]
T1 \left( {q} \right) + | \log_2 \left( {q} \right) |&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;T1(q)+|log_2(q)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;T1 \left( {q} \right) + | \log_2 \left( {q} \right) |&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Complexity+|Span|&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 143: Line 176:
         &lt;td&gt;Arithmetic Height&lt;br /&gt;
         &lt;td&gt;Arithmetic Height&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:7:
        &lt;td&gt;Proper&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:10:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
n+d&amp;lt;br/&amp;gt;[[math]]
n + d&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;n+d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n + d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:8:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:11:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\frac{(q+1)}{\sqrt{q}}}2^{T1(q)/2}&amp;lt;br/&amp;gt;[[math]]
\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\frac{(q+1)}{\sqrt{q}}}2^{T1(q)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:9:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:12:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
T1(q)+2log_2(q+1)-log_2(q)&amp;lt;br/&amp;gt;[[math]]
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;T1(q)+2log_2(q+1)-log_2(q)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Complexity+2(Tartini Tone Span)-Span&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 164: Line 197:
         &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:10:
        &lt;td&gt;Improper&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:13:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
max(2^{-v_2(n)}n,&amp;lt;br /&amp;gt;
\max \left( {2^{-v_2 \left( {n} \right)} n , &amp;lt;br /&amp;gt;
2^{-v_2(d)}d)&amp;lt;br/&amp;gt;[[math]]
2^{-v_2 \left( {d} \right)} d} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;max(2^{-v_2(n)}n,
  --&gt;&lt;script type="math/tex"&gt;\max \left( {2^{-v_2 \left( {n} \right)} n ,  
2^{-v_2(d)}d)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
2^{-v_2 \left( {d} \right)} d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:11:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:14:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:12:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:15:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|&amp;lt;br/&amp;gt;[[math]]
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;No-2's-Complexity+|No-2's-Span|&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 201: Line 234:
&lt;br /&gt;
&lt;br /&gt;
Some useful identities:&lt;br /&gt;
Some useful identities:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:13:
&lt;!-- ws:start:WikiTextMathRule:16:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
n=2^{(T1(q)+log_2(q))/2}&amp;lt;br/&amp;gt;[[math]]
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;n=2^{(T1(q)+log_2(q))/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:16 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:14:
&lt;!-- ws:start:WikiTextMathRule:17:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
d=2^{(T1(q)-log_2(q))/2}&amp;lt;br/&amp;gt;[[math]]
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;d=2^{(T1(q)-log_2(q))/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:17 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:15:
&lt;!-- ws:start:WikiTextMathRule:18:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
nd=2^{T1(q)}&amp;lt;br/&amp;gt;[[math]]
n d = 2^{T1 \left( {q} \right)}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;nd=2^{T1(q)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
  --&gt;&lt;script type="math/tex"&gt;n d = 2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:18 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 01:32, 10 September 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Sarzadoce and made on 2012-09-10 01:32:24 UTC.
The original revision id was 363321120.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=Definition:= 
A **Height** is a function on members of an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the positive rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.

A height function H(q) on the positive rationals q should fulfill the following criteria:
# Given any constant C, there are finitely many elements q such that H(q) <= C.
# There is a unique constant K such that H(q) >= K, for all q.
# H(q) = H(1/q)
# H(q^n) >= H(q) for any non-negative integer n

If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
[[math]]
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)
[[math]]

An **Improper Height** is a function which does not obey criteria #1 above in the strictest sense, but instead requires an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:
[[math]]
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q
[[math]]

Or equivalently, if n has any integer solutions:
[[math]]
p = 2^n q
[[math]]

If the above condition is met, we may then establish the following equivalence relation:
[[math]]
p \equiv q
[[math]]

By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.
====== ====== 
=Examples of Height Functions:= 
|| __Name:__ || __Type:__ || __H(n/d):__ || __H(q):__ || __H(q) simplified by equivalence relation:__ ||
|| [[Benedetti Height|Benedetti height]]
(or [[Tenney Height]]) || Proper || [[math]]
n d
[[math]] || [[math]]
2^{T1 \left( {q} \right)}
[[math]] || [[math]]
T1 \left( {q} \right)
[[math]] ||
|| Weil Height || Proper || [[math]]
\max \left( {n , d} \right)
[[math]] || [[math]]
\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)
[[math]] || [[math]]
T1 \left( {q} \right) + | \log_2 \left( {q} \right) |
[[math]] ||
|| Arithmetic Height || Proper || [[math]]
n + d
[[math]] || [[math]]
\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)
[[math]] || [[math]]
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)
[[math]] ||
|| [[Kees Height]] || Improper || [[math]]
\max \left( {2^{-v_2 \left( {n} \right)} n , 
2^{-v_2 \left( {d} \right)} d} \right)
[[math]] || [[math]]
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)
[[math]] || [[math]]
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
[[math]] ||
||   ||   ||   ||   ||   ||
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.

Some useful identities:
[[math]]
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)
[[math]]
[[math]]
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)
[[math]]
[[math]]
n d = 2^{T1 \left( {q} \right)}
[[math]]

Original HTML content:

<html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:19:&lt;h1&gt; --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:19 -->Definition:</h1>
 A <strong>Height</strong> is a function on members of an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the positive rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.<br />
<br />
A height function H(q) on the positive rationals q should fulfill the following criteria:<br />
<ol><li>Given any constant C, there are finitely many elements q such that H(q) &lt;= C.</li><li>There is a unique constant K such that H(q) &gt;= K, for all q.</li><li>H(q) = H(1/q)</li><li>H(q^n) &gt;= H(q) for any non-negative integer n</li></ol><br />
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br />
<!-- ws:start:WikiTextMathRule:0:
[[math]]&lt;br/&gt;
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</script><!-- ws:end:WikiTextMathRule:0 --><br />
<br />
An <strong>Improper Height</strong> is a function which does not obey criteria #1 above in the strictest sense, but instead requires an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:<br />
<!-- ws:start:WikiTextMathRule:1:
[[math]]&lt;br/&gt;
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&lt;br/&gt;[[math]]
 --><script type="math/tex">2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q</script><!-- ws:end:WikiTextMathRule:1 --><br />
<br />
Or equivalently, if n has any integer solutions:<br />
<!-- ws:start:WikiTextMathRule:2:
[[math]]&lt;br/&gt;
p = 2^n q&lt;br/&gt;[[math]]
 --><script type="math/tex">p = 2^n q</script><!-- ws:end:WikiTextMathRule:2 --><br />
<br />
If the above condition is met, we may then establish the following equivalence relation:<br />
<!-- ws:start:WikiTextMathRule:3:
[[math]]&lt;br/&gt;
p \equiv q&lt;br/&gt;[[math]]
 --><script type="math/tex">p \equiv q</script><!-- ws:end:WikiTextMathRule:3 --><br />
<br />
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.<br />
<!-- ws:start:WikiTextHeadingRule:21:&lt;h6&gt; --><h6 id="toc1"><!-- ws:end:WikiTextHeadingRule:21 --> </h6>
 <!-- ws:start:WikiTextHeadingRule:23:&lt;h1&gt; --><h1 id="toc2"><a name="Examples of Height Functions:"></a><!-- ws:end:WikiTextHeadingRule:23 -->Examples of Height Functions:</h1>
 

<table class="wiki_table">
    <tr>
        <td><u>Name:</u><br />
</td>
        <td><u>Type:</u><br />
</td>
        <td><u>H(n/d):</u><br />
</td>
        <td><u>H(q):</u><br />
</td>
        <td><u>H(q) simplified by equivalence relation:</u><br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Benedetti%20Height">Benedetti height</a><br />
(or <a class="wiki_link" href="/Tenney%20Height">Tenney Height</a>)<br />
</td>
        <td>Proper<br />
</td>
        <td><!-- ws:start:WikiTextMathRule:4:
[[math]]&lt;br/&gt;
n d&lt;br/&gt;[[math]]
 --><script type="math/tex">n d</script><!-- ws:end:WikiTextMathRule:4 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:5:
[[math]]&lt;br/&gt;
2^{T1 \left( {q} \right)}&lt;br/&gt;[[math]]
 --><script type="math/tex">2^{T1 \left( {q} \right)}</script><!-- ws:end:WikiTextMathRule:5 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:6:
[[math]]&lt;br/&gt;
T1 \left( {q} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">T1 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:6 --><br />
</td>
    </tr>
    <tr>
        <td>Weil Height<br />
</td>
        <td>Proper<br />
</td>
        <td><!-- ws:start:WikiTextMathRule:7:
[[math]]&lt;br/&gt;
\max \left( {n , d} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">\max \left( {n , d} \right)</script><!-- ws:end:WikiTextMathRule:7 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:8:
[[math]]&lt;br/&gt;
\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)</script><!-- ws:end:WikiTextMathRule:8 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:9:
[[math]]&lt;br/&gt;
T1 \left( {q} \right) + | \log_2 \left( {q} \right) |&lt;br/&gt;[[math]]
 --><script type="math/tex">T1 \left( {q} \right) + | \log_2 \left( {q} \right) |</script><!-- ws:end:WikiTextMathRule:9 --><br />
</td>
    </tr>
    <tr>
        <td>Arithmetic Height<br />
</td>
        <td>Proper<br />
</td>
        <td><!-- ws:start:WikiTextMathRule:10:
[[math]]&lt;br/&gt;
n + d&lt;br/&gt;[[math]]
 --><script type="math/tex">n + d</script><!-- ws:end:WikiTextMathRule:10 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:11:
[[math]]&lt;br/&gt;
\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:11 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:12:
[[math]]&lt;br/&gt;
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:12 --><br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Kees%20Height">Kees Height</a><br />
</td>
        <td>Improper<br />
</td>
        <td><!-- ws:start:WikiTextMathRule:13:
[[math]]&lt;br/&gt;
\max \left( {2^{-v_2 \left( {n} \right)} n , &lt;br /&gt;
2^{-v_2 \left( {d} \right)} d} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">\max \left( {2^{-v_2 \left( {n} \right)} n , 
2^{-v_2 \left( {d} \right)} d} \right)</script><!-- ws:end:WikiTextMathRule:13 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:14:
[[math]]&lt;br/&gt;
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)</script><!-- ws:end:WikiTextMathRule:14 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:15:
[[math]]&lt;br/&gt;
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&lt;br/&gt;[[math]]
 --><script type="math/tex">T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</script><!-- ws:end:WikiTextMathRule:15 --><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

Where T1(q) is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)">tenney norm</a> of q in monzo form, and vp(x) is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow">p-adic valuation</a> of x.<br />
<br />
Some useful identities:<br />
<!-- ws:start:WikiTextMathRule:16:
[[math]]&lt;br/&gt;
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:16 --><br />
<!-- ws:start:WikiTextMathRule:17:
[[math]]&lt;br/&gt;
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&lt;br/&gt;[[math]]
 --><script type="math/tex">d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:17 --><br />
<!-- ws:start:WikiTextMathRule:18:
[[math]]&lt;br/&gt;
n d = 2^{T1 \left( {q} \right)}&lt;br/&gt;[[math]]
 --><script type="math/tex">n d = 2^{T1 \left( {q} \right)}</script><!-- ws:end:WikiTextMathRule:18 --></body></html>