Height: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>Sarzadoce **Imported revision 363321120 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 363456640 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-10 12:14:33 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>363456640</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:= | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:= | ||
A **Height** is a function on members of an | A **Height** is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes. | ||
A height function H(q) on the positive rationals q should fulfill the following criteria: | A height function H(q) on the positive rationals q should fulfill the following criteria: | ||
# Given any constant C, there are finitely many elements q such that H(q) | # Given any constant C, there are finitely many elements q such that H(q) ≤ C. | ||
# | # H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q. | ||
# H(q) = H(1/q) | # H(q) = H(1/q) | ||
# H(q^n) | # H(q^n) ≥ H(q) for any non-negative integer n | ||
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation: | If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation: | ||
Line 20: | Line 20: | ||
[[math]] | [[math]] | ||
An **Improper Height** is a function which does not obey criteria #1 above in the strictest sense, | An **Improper Height** is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true: | ||
[[math]] | [[math]] | ||
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q | 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q | ||
Line 81: | Line 81: | ||
[[math]] | [[math]] | ||
n d = 2^{T1 \left( {q} \right)} | n d = 2^{T1 \left( {q} \right)} | ||
[[math]]</pre></div> | [[math]] | ||
Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:19:&lt;h1&gt; --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:19 -->Definition:</h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:19:&lt;h1&gt; --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:19 -->Definition:</h1> | ||
A <strong>Height</strong> is a function on members of an | A <strong>Height</strong> is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.<br /> | ||
<br /> | <br /> | ||
A height function H(q) on the positive rationals q should fulfill the following criteria:<br /> | A height function H(q) on the positive rationals q should fulfill the following criteria:<br /> | ||
<ol><li>Given any constant C, there are finitely many elements q such that H(q) | <ol><li>Given any constant C, there are finitely many elements q such that H(q) ≤ C.</li><li>H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.</li><li>H(q) = H(1/q)</li><li>H(q^n) ≥ H(q) for any non-negative integer n</li></ol><br /> | ||
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br /> | If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br /> | ||
<!-- ws:start:WikiTextMathRule:0: | <!-- ws:start:WikiTextMathRule:0: | ||
Line 94: | Line 96: | ||
--><script type="math/tex">H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</script><!-- ws:end:WikiTextMathRule:0 --><br /> | --><script type="math/tex">H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</script><!-- ws:end:WikiTextMathRule:0 --><br /> | ||
<br /> | <br /> | ||
An <strong>Improper Height</strong> is a function which does not obey criteria #1 above in the strictest sense, | An <strong>Improper Height</strong> is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:<br /> | ||
<!-- ws:start:WikiTextMathRule:1: | <!-- ws:start:WikiTextMathRule:1: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
Line 245: | Line 247: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
n d = 2^{T1 \left( {q} \right)}&lt;br/&gt;[[math]] | n d = 2^{T1 \left( {q} \right)}&lt;br/&gt;[[math]] | ||
--><script type="math/tex">n d = 2^{T1 \left( {q} \right)}</script><!-- ws:end:WikiTextMathRule:18 --></body></html></pre></div> | --><script type="math/tex">n d = 2^{T1 \left( {q} \right)}</script><!-- ws:end:WikiTextMathRule:18 --><br /> | ||
<br /> | |||
Height functions can also be put on the points of <a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow">projective varieties</a>. Since <a class="wiki_link" href="/abstract%20regular%20temperaments">abstract regular temperaments</a> can be identified with rational points on <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow">Grassmann varieties</a>, complexity measures of regular temperaments are also height functions.</body></html></pre></div> |
Revision as of 12:14, 10 September 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-09-10 12:14:33 UTC.
- The original revision id was 363456640.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=Definition:= A **Height** is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes. A height function H(q) on the positive rationals q should fulfill the following criteria: # Given any constant C, there are finitely many elements q such that H(q) ≤ C. # H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q. # H(q) = H(1/q) # H(q^n) ≥ H(q) for any non-negative integer n If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation: [[math]] H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right) [[math]] An **Improper Height** is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true: [[math]] 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q [[math]] Or equivalently, if n has any integer solutions: [[math]] p = 2^n q [[math]] If the above condition is met, we may then establish the following equivalence relation: [[math]] p \equiv q [[math]] By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example. ====== ====== =Examples of Height Functions:= || __Name:__ || __Type:__ || __H(n/d):__ || __H(q):__ || __H(q) simplified by equivalence relation:__ || || [[Benedetti Height|Benedetti height]] (or [[Tenney Height]]) || Proper || [[math]] n d [[math]] || [[math]] 2^{T1 \left( {q} \right)} [[math]] || [[math]] T1 \left( {q} \right) [[math]] || || Weil Height || Proper || [[math]] \max \left( {n , d} \right) [[math]] || [[math]] \exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right) [[math]] || [[math]] T1 \left( {q} \right) + | \log_2 \left( {q} \right) | [[math]] || || Arithmetic Height || Proper || [[math]] n + d [[math]] || [[math]] \dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right) [[math]] || [[math]] T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right) [[math]] || || [[Kees Height]] || Improper || [[math]] \max \left( {2^{-v_2 \left( {n} \right)} n , 2^{-v_2 \left( {d} \right)} d} \right) [[math]] || [[math]] \exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right) [[math]] || [[math]] T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) | [[math]] || || || || || || || Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x. Some useful identities: [[math]] n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right) [[math]] [[math]] d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right) [[math]] [[math]] n d = 2^{T1 \left( {q} \right)} [[math]] Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.
Original HTML content:
<html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:19:<h1> --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:19 -->Definition:</h1> A <strong>Height</strong> is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.<br /> <br /> A height function H(q) on the positive rationals q should fulfill the following criteria:<br /> <ol><li>Given any constant C, there are finitely many elements q such that H(q) ≤ C.</li><li>H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.</li><li>H(q) = H(1/q)</li><li>H(q^n) ≥ H(q) for any non-negative integer n</li></ol><br /> If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br /> <!-- ws:start:WikiTextMathRule:0: [[math]]<br/> H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)<br/>[[math]] --><script type="math/tex">H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</script><!-- ws:end:WikiTextMathRule:0 --><br /> <br /> An <strong>Improper Height</strong> is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:<br /> <!-- ws:start:WikiTextMathRule:1: [[math]]<br/> 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q<br/>[[math]] --><script type="math/tex">2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q</script><!-- ws:end:WikiTextMathRule:1 --><br /> <br /> Or equivalently, if n has any integer solutions:<br /> <!-- ws:start:WikiTextMathRule:2: [[math]]<br/> p = 2^n q<br/>[[math]] --><script type="math/tex">p = 2^n q</script><!-- ws:end:WikiTextMathRule:2 --><br /> <br /> If the above condition is met, we may then establish the following equivalence relation:<br /> <!-- ws:start:WikiTextMathRule:3: [[math]]<br/> p \equiv q<br/>[[math]] --><script type="math/tex">p \equiv q</script><!-- ws:end:WikiTextMathRule:3 --><br /> <br /> By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.<br /> <!-- ws:start:WikiTextHeadingRule:21:<h6> --><h6 id="toc1"><!-- ws:end:WikiTextHeadingRule:21 --> </h6> <!-- ws:start:WikiTextHeadingRule:23:<h1> --><h1 id="toc2"><a name="Examples of Height Functions:"></a><!-- ws:end:WikiTextHeadingRule:23 -->Examples of Height Functions:</h1> <table class="wiki_table"> <tr> <td><u>Name:</u><br /> </td> <td><u>Type:</u><br /> </td> <td><u>H(n/d):</u><br /> </td> <td><u>H(q):</u><br /> </td> <td><u>H(q) simplified by equivalence relation:</u><br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Benedetti%20Height">Benedetti height</a><br /> (or <a class="wiki_link" href="/Tenney%20Height">Tenney Height</a>)<br /> </td> <td>Proper<br /> </td> <td><!-- ws:start:WikiTextMathRule:4: [[math]]<br/> n d<br/>[[math]] --><script type="math/tex">n d</script><!-- ws:end:WikiTextMathRule:4 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:5: [[math]]<br/> 2^{T1 \left( {q} \right)}<br/>[[math]] --><script type="math/tex">2^{T1 \left( {q} \right)}</script><!-- ws:end:WikiTextMathRule:5 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:6: [[math]]<br/> T1 \left( {q} \right)<br/>[[math]] --><script type="math/tex">T1 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:6 --><br /> </td> </tr> <tr> <td>Weil Height<br /> </td> <td>Proper<br /> </td> <td><!-- ws:start:WikiTextMathRule:7: [[math]]<br/> \max \left( {n , d} \right)<br/>[[math]] --><script type="math/tex">\max \left( {n , d} \right)</script><!-- ws:end:WikiTextMathRule:7 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:8: [[math]]<br/> \exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)<br/>[[math]] --><script type="math/tex">\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)</script><!-- ws:end:WikiTextMathRule:8 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:9: [[math]]<br/> T1 \left( {q} \right) + | \log_2 \left( {q} \right) |<br/>[[math]] --><script type="math/tex">T1 \left( {q} \right) + | \log_2 \left( {q} \right) |</script><!-- ws:end:WikiTextMathRule:9 --><br /> </td> </tr> <tr> <td>Arithmetic Height<br /> </td> <td>Proper<br /> </td> <td><!-- ws:start:WikiTextMathRule:10: [[math]]<br/> n + d<br/>[[math]] --><script type="math/tex">n + d</script><!-- ws:end:WikiTextMathRule:10 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:11: [[math]]<br/> \dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)<br/>[[math]] --><script type="math/tex">\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:11 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:12: [[math]]<br/> T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)<br/>[[math]] --><script type="math/tex">T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:12 --><br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Kees%20Height">Kees Height</a><br /> </td> <td>Improper<br /> </td> <td><!-- ws:start:WikiTextMathRule:13: [[math]]<br/> \max \left( {2^{-v_2 \left( {n} \right)} n , <br /> 2^{-v_2 \left( {d} \right)} d} \right)<br/>[[math]] --><script type="math/tex">\max \left( {2^{-v_2 \left( {n} \right)} n , 2^{-v_2 \left( {d} \right)} d} \right)</script><!-- ws:end:WikiTextMathRule:13 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:14: [[math]]<br/> \exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)<br/>[[math]] --><script type="math/tex">\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)</script><!-- ws:end:WikiTextMathRule:14 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:15: [[math]]<br/> T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |<br/>[[math]] --><script type="math/tex">T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</script><!-- ws:end:WikiTextMathRule:15 --><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> </table> Where T1(q) is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)">tenney norm</a> of q in monzo form, and vp(x) is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow">p-adic valuation</a> of x.<br /> <br /> Some useful identities:<br /> <!-- ws:start:WikiTextMathRule:16: [[math]]<br/> n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)<br/>[[math]] --><script type="math/tex">n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:16 --><br /> <!-- ws:start:WikiTextMathRule:17: [[math]]<br/> d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)<br/>[[math]] --><script type="math/tex">d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:17 --><br /> <!-- ws:start:WikiTextMathRule:18: [[math]]<br/> n d = 2^{T1 \left( {q} \right)}<br/>[[math]] --><script type="math/tex">n d = 2^{T1 \left( {q} \right)}</script><!-- ws:end:WikiTextMathRule:18 --><br /> <br /> Height functions can also be put on the points of <a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow">projective varieties</a>. Since <a class="wiki_link" href="/abstract%20regular%20temperaments">abstract regular temperaments</a> can be identified with rational points on <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow">Grassmann varieties</a>, complexity measures of regular temperaments are also height functions.</body></html>