Minimal consistent EDOs: Difference between revisions
ArrowHead294 (talk | contribs) Highlight 2^n-1 values |
ArrowHead294 (talk | contribs) m Condense table |
||
Line 2: | Line 2: | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
! Odd<br>limit !! Smallest<br>consistent edo* !! Smallest distinctly<br>consistent edo !! Smallest ''purely<br>consistent''** edo | |||
! Odd<br>limit | |||
! Smallest<br>consistent edo* | |||
! Smallest distinctly<br>consistent edo | |||
! Smallest ''purely<br>consistent''** edo | |||
|- style="background-color: #c0c0c0;" | |- style="background-color: #c0c0c0;" | ||
| 1 | | 1 || 1 || 1 || 1 | ||
| 1 | |||
| 1 | |||
| 1 | |||
|- style="background-color: #c0c0c0;" | |- style="background-color: #c0c0c0;" | ||
| 3 | | 3 || 1 || 3 || 2 | ||
| 1 | |||
| 3 | |||
| 2 | |||
|- | |- | ||
| 5 | | 5 || 3 || 9 || 3 | ||
| 3 | |||
| 9 | |||
| 3 | |||
|- style="background-color: #c0c0c0;" | |- style="background-color: #c0c0c0;" | ||
| 7 | | 7 || 4 || 27 || 10 | ||
| 4 | |||
| 27 | |||
| 10 | |||
|- | |- | ||
| 9 | | 9 || 5 || 41 || 41 | ||
| 5 | |||
| 41 | |||
| 41 | |||
|- | |- | ||
| 11 | | 11 || 22 || 58 || 41 | ||
| 22 | |||
| 58 | |||
| 41 | |||
|- | |- | ||
| 13 | | 13 || 26 || 87 || 46 | ||
| 26 | |||
| 87 | |||
| 46 | |||
|- style="background-color: #c0c0c0;" | |- style="background-color: #c0c0c0;" | ||
| 15 | | 15 || 29 || 111 || 87 | ||
| 29 | |||
| 111 | |||
| 87 | |||
|- | |- | ||
| 17 | | 17 || 58 || 149 || 311 | ||
| 58 | |||
| 149 | |||
| 311 | |||
|- | |- | ||
| 19 | | 19 || 80 || 217 || 311 | ||
| 80 | |||
| 217 | |||
| 311 | |||
|- | |- | ||
| 21 | | 21 || 94 || 282 || 311 | ||
| 94 | |||
| 282 | |||
| 311 | |||
|- | |- | ||
| 23 | | 23 || 94 || 282 || 311 | ||
| 94 | |||
| 282 | |||
| 311 | |||
|- | |- | ||
| 25 | | 25 || 282 || 388 || 311 | ||
| 282 | |||
| 388 | |||
| 311 | |||
|- | |- | ||
| 27 | | 27 || 282 || 388 || 311 | ||
| 282 | |||
| 388 | |||
| 311 | |||
|- | |- | ||
| 29 | | 29 || 282 || 1323 || 311 | ||
| 282 | |||
| 1323 | |||
| 311 | |||
|- style="background-color: #c0c0c0;" | |- style="background-color: #c0c0c0;" | ||
| 31 | | 31 || 311 || 1600 || 311 | ||
| 311 | |||
| 1600 | |||
| 311 | |||
|- | |- | ||
| 33 | | 33 || 311 || 1600 || 311 | ||
| 311 | |||
| 1600 | |||
| 311 | |||
|- | |- | ||
| 35 | | 35 || 311 || 1600 || 311 | ||
| 311 | |||
| 1600 | |||
| 311 | |||
|- | |- | ||
| 37 | | 37 || 311 || 1600 || 311 | ||
| 311 | |||
| 1600 | |||
| 311 | |||
|- | |- | ||
| 39 | | 39 || 311 || 2554 || 311 | ||
| 311 | |||
| 2554 | |||
| 311 | |||
|- | |- | ||
| 41 | | 41 || 311 || 2554 || 311 | ||
| 311 | |||
| 2554 | |||
| 311 | |||
|- | |- | ||
| 43 | | 43 || 17461 || 17461 || 20567 | ||
| 17461 | |||
| 17461 | |||
| 20567 | |||
|- | |- | ||
| 45 | | 45 || 17461 || 17461 || 20567 | ||
| 17461 | |||
| 17461 | |||
| 20567 | |||
|- | |- | ||
| 47 | | 47 || 20567 || 20567 || 20567 | ||
| 20567 | |||
| 20567 | |||
| 20567 | |||
|- | |- | ||
| 49 | | 49 || 20567 || 20567 || 459944 | ||
| 20567 | |||
| 20567 | |||
| 459944 | |||
|- | |- | ||
| 51 | | 51 || 20567 || 20567 || 459944 | ||
| 20567 | |||
| 20567 | |||
| 459944 | |||
|- | |- | ||
| 53 | | 53 || 20567 || 20567 || 1705229 | ||
| 20567 | |||
| 20567 | |||
| 1705229 | |||
|- | |- | ||
| 55 | | 55 || 20567 || 20567 || 1705229 | ||
| 20567 | |||
| 20567 | |||
| 1705229 | |||
|- | |- | ||
| 57 | | 57 || 20567 || 20567 || 1705229 | ||
| 20567 | |||
| 20567 | |||
| 1705229 | |||
|- | |- | ||
| 59 | | 59 || 253389 || 253389 || 3159811 | ||
| 253389 | |||
| 253389 | |||
| 3159811 | |||
|- | |- | ||
| 61 | | 61 || 625534 || 625534 || 3159811 | ||
| 625534 | |||
| 625534 | |||
| 3159811 | |||
|- style="background-color: #c0c0c0;" | |- style="background-color: #c0c0c0;" | ||
| 63 | | 63 || 625534 || 625534 || 3159811 | ||
| 625534 | |||
| 625534 | |||
| 3159811 | |||
|- | |- | ||
| 65 | | 65 || 625534 || 625534 || 3159811 | ||
| 625534 | |||
| 625534 | |||
| 3159811 | |||
|- | |- | ||
| 67 | | 67 || 625534 || 625534 || 7317929 | ||
| 625534 | |||
| 625534 | |||
| 7317929 | |||
|- | |- | ||
| 69 | | 69 || 759630 || 759630 || 8595351 | ||
| 759630 | |||
| 759630 | |||
| 8595351 | |||
|- | |- | ||
| 71 | | 71 || 759630 || 759630 || 8595351 | ||
| 759630 | |||
| 759630 | |||
| 8595351 | |||
|- | |- | ||
| 73 | | 73 || 759630 || 759630 || 27783092 | ||
| 759630 | |||
| 759630 | |||
| 27783092 | |||
|- | |- | ||
| 75 | | 75 || 2157429 || 2157429 || 34531581 | ||
| 2157429 | |||
| 2157429 | |||
| 34531581 | |||
|- | |- | ||
| 77 | | 77 || 2157429 || 2157429 || 34531581 | ||
| 2157429 | |||
| 2157429 | |||
| 34531581 | |||
|- | |- | ||
| 79 | | 79 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 81 | | 81 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 83 | | 83 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 85 | | 85 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 87 | | 87 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 89 | | 89 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 91 | | 91 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 93 | | 93 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 95 | | 95 || 2901533 || 2901533 || 50203972 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 97 | | 97 || 2901533 || 2901533 || 1297643131 | ||
| 2901533 | |||
| 2901533 | |||
| 1297643131 | |||
|- | |- | ||
| 99 | | 99 || 2901533 || 2901533 || 1297643131 | ||
| 2901533 | |||
| 2901533 | |||
| 1297643131 | |||
|- | |- | ||
| 101 | | 101 || 2901533 || 2901533 || 3888109922 | ||
| 2901533 | |||
| 2901533 | |||
| 3888109922 | |||
|- | |- | ||
| 103 | | 103 || 2901533 || 2901533 || 3888109922 | ||
| 2901533 | |||
| 2901533 | |||
| 3888109922 | |||
|- | |- | ||
| 105 | | 105 || 2901533 || 2901533 || 3888109922 | ||
| 2901533 | |||
| 2901533 | |||
| 3888109922 | |||
|- | |- | ||
| 107 | | 107 || 2901533 || 2901533 || 13805152233 | ||
| 2901533 | |||
| 2901533 | |||
| 13805152233 | |||
|- | |- | ||
| 109 | | 109 || 2901533 || 2901533 || 27218556026 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 111 | | 111 || 2901533 || 2901533 || 27218556026 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 113 | | 113 || 2901533 || 2901533 || 27218556026 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 115 | | 115 || 2901533 || 2901533 || 27218556026 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 117 | | 117 || 2901533 || 2901533 || 27218556026 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 119 | | 119 || 2901533 || 2901533 || 42586208631 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 121 | | 121 || 2901533 || 2901533 || 42586208631 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 123 | | 123 || 2901533 || 2901533 || 42586208631 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 125 | | 125 || 2901533 || 2901533 || 42586208631 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- style="background-color: #c0c0c0;" | |- style="background-color: #c0c0c0;" | ||
| 127 | | 127 || 2901533 || 2901533 || 42586208631 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 129 | | 129 || 2901533 || 2901533 || 42586208631 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 131 | | 131 || 2901533 || 2901533 || 93678217813 | ||
| 2901533 | |||
| 2901533 | |||
| 93678217813 | |||
|- | |- | ||
| 133 | | 133 || 70910024 || 70910024 || 93678217813 | ||
| 70910024 | |||
| 70910024 | |||
| 93678217813 | |||
|- | |- | ||
| 135 | | 135 || 70910024 || 70910024 || 93678217813*** | ||
| 70910024 | |||
| 70910024 | |||
| 93678217813*** | |||
|} | |} | ||
<nowiki>*</nowiki> apart from 0edo | <nowiki>*</nowiki> apart from 0edo |
Revision as of 13:27, 9 July 2024
An edo N is consistent with respect to the q-odd-limit if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is distinctly consistent if every one of those closest approximations is a distinct value, and purely consistent if its relative errors on odd harmonics up to and including q never exceed 25%. Below is a table of the smallest consistent, and the smallest distinctly consistent, edo for every odd number up to 135.
Odd limit |
Smallest consistent edo* |
Smallest distinctly consistent edo |
Smallest purely consistent** edo |
---|---|---|---|
1 | 1 | 1 | 1 |
3 | 1 | 3 | 2 |
5 | 3 | 9 | 3 |
7 | 4 | 27 | 10 |
9 | 5 | 41 | 41 |
11 | 22 | 58 | 41 |
13 | 26 | 87 | 46 |
15 | 29 | 111 | 87 |
17 | 58 | 149 | 311 |
19 | 80 | 217 | 311 |
21 | 94 | 282 | 311 |
23 | 94 | 282 | 311 |
25 | 282 | 388 | 311 |
27 | 282 | 388 | 311 |
29 | 282 | 1323 | 311 |
31 | 311 | 1600 | 311 |
33 | 311 | 1600 | 311 |
35 | 311 | 1600 | 311 |
37 | 311 | 1600 | 311 |
39 | 311 | 2554 | 311 |
41 | 311 | 2554 | 311 |
43 | 17461 | 17461 | 20567 |
45 | 17461 | 17461 | 20567 |
47 | 20567 | 20567 | 20567 |
49 | 20567 | 20567 | 459944 |
51 | 20567 | 20567 | 459944 |
53 | 20567 | 20567 | 1705229 |
55 | 20567 | 20567 | 1705229 |
57 | 20567 | 20567 | 1705229 |
59 | 253389 | 253389 | 3159811 |
61 | 625534 | 625534 | 3159811 |
63 | 625534 | 625534 | 3159811 |
65 | 625534 | 625534 | 3159811 |
67 | 625534 | 625534 | 7317929 |
69 | 759630 | 759630 | 8595351 |
71 | 759630 | 759630 | 8595351 |
73 | 759630 | 759630 | 27783092 |
75 | 2157429 | 2157429 | 34531581 |
77 | 2157429 | 2157429 | 34531581 |
79 | 2901533 | 2901533 | 50203972 |
81 | 2901533 | 2901533 | 50203972 |
83 | 2901533 | 2901533 | 50203972 |
85 | 2901533 | 2901533 | 50203972 |
87 | 2901533 | 2901533 | 50203972 |
89 | 2901533 | 2901533 | 50203972 |
91 | 2901533 | 2901533 | 50203972 |
93 | 2901533 | 2901533 | 50203972 |
95 | 2901533 | 2901533 | 50203972 |
97 | 2901533 | 2901533 | 1297643131 |
99 | 2901533 | 2901533 | 1297643131 |
101 | 2901533 | 2901533 | 3888109922 |
103 | 2901533 | 2901533 | 3888109922 |
105 | 2901533 | 2901533 | 3888109922 |
107 | 2901533 | 2901533 | 13805152233 |
109 | 2901533 | 2901533 | 27218556026 |
111 | 2901533 | 2901533 | 27218556026 |
113 | 2901533 | 2901533 | 27218556026 |
115 | 2901533 | 2901533 | 27218556026 |
117 | 2901533 | 2901533 | 27218556026 |
119 | 2901533 | 2901533 | 42586208631 |
121 | 2901533 | 2901533 | 42586208631 |
123 | 2901533 | 2901533 | 42586208631 |
125 | 2901533 | 2901533 | 42586208631 |
127 | 2901533 | 2901533 | 42586208631 |
129 | 2901533 | 2901533 | 42586208631 |
131 | 2901533 | 2901533 | 93678217813 |
133 | 70910024 | 70910024 | 93678217813 |
135 | 70910024 | 70910024 | 93678217813*** |
* apart from 0edo
** purely consistent is an [idiosyncratic term]
*** purely consistent to the 137-odd-limit
The last entry, 70910024edo, is consistent up to the 135-odd-limit. The next edo is 5407372813, reported to be consistent to the 155-odd-limit.
OEIS integer sequences links
- OEIS: Equal divisions of the octave with progressively increasing consistency levels (OEIS)
- OEIS: Equal divisions of the octave with progressively increasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit (OEIS)
- OEIS: Equal divisions of the octave with nondecreasing consistency levels. (OEIS)
- OEIS: Equal divisions of the octave with nondecreasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit (OEIS)