User:Frostburn/Fifth-equivalent Interval Classes: Difference between revisions
Jump to navigation
Jump to search
Create page. Add first two sets. |
Add more tables |
||
Line 1: | Line 1: | ||
These tables list interval classes under 3/2-equivalence ordered by complexity analogous to [[odd-limit]]. | These tables list interval classes under 3/2-equivalence ordered by complexity analogous to [[odd-limit]]. | ||
Note that every third | The tables only list new entries. The limits contain all previous limits. | ||
Note that every third table is empty similar to throdd-limit. | |||
== 1-(3/2-odd)-limit == | == 1-(3/2-odd)-limit == | ||
Line 23: | Line 25: | ||
|} | |} | ||
== 4-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
| 1/4 || 27/32 || 81/64 || 243/128 | |||
|- | |||
| 4/1 || 8/3 || 4/1 || 6/1 | |||
|} | |||
== 5-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 5/4 || 5/6 || 5/4 || 15/8 | |||
|- | |||
| 5/2 || 5/3 || 5/2 || 15/4 | |||
|- | |||
| 5/1 || 10/3 || 5/1 || 15/2 | |||
|- | |||
| 4/5 || 4/5 || 6/5 || 9/5 | |||
|- | |||
| 5/3 || 10/9 || 5/3 || 5/2 | |||
|- | |||
| 3/5 || 9/10 || 27/20 || 81/40 | |||
|- | |||
| 2/5 || 9/10 || 27/20 || 81/40 | |||
|- | |||
| 1/5 || 27/40 || 81/80 || 243/160 | |||
|} | |||
== 7-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 7/4 || 7/6 || 7/4 || 21/8 | |||
|- | |||
| 7/2 || 7/3 || 7/2 || 21/4 | |||
|- | |||
| 5/7 || 5/7 || 15/14 || 45/28 | |||
|- | |||
| 7/1 || 14/3 || 7/1 || 21/2 | |||
|- | |||
| 3/7 || 27/28 || 81/56 || 243/112 | |||
|- | |||
| 7/6 || 7/9 || 7/6 || 7/4 | |||
|- | |||
| 1/7 || 81/112 || 243/224 || 729/448 | |||
|- | |||
| 6/7 || 6/7 || 9/7 || 27/14 | |||
|- | |||
| 7/5 || 14/15 || 7/5 || 21/10 | |||
|- | |||
| 4/7 || 6/7 || 9/7 || 27/14 | |||
|- | |||
| 2/7 || 27/28 || 81/56 || 243/112 | |||
|- | |||
| 7/3 || 14/9 || 7/3 || 7/2 | |||
|} | |||
== 8-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 1/8 || 243/256 || 729/512 || 2187/1024 | |||
|- | |||
| 5/8 || 15/16 || 45/32 || 135/64 | |||
|- | |||
| 7/8 || 7/8 || 21/16 || 63/32 | |||
|- | |||
| 8/1 || 16/3 || 8/1 || 12/1 | |||
|- | |||
| 8/5 || 16/15 || 8/5 || 12/5 | |||
|- | |||
| 8/7 || 16/21 || 8/7 || 12/7 | |||
|} | |||
== 10-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 7/10 || 7/10 || 21/20 || 63/40 | |||
|- | |||
| 10/1 || 20/3 || 10/1 || 15/1 | |||
|- | |||
| 1/10 || 243/320 || 729/640 || 2187/1280 | |||
|- | |||
| 10/7 || 20/21 || 10/7 || 15/7 | |||
|} | |||
== 11-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 11/8 || 11/12 || 11/8 || 33/16 | |||
|- | |||
| 11/4 || 11/6 || 11/4 || 33/8 | |||
|- | |||
| 11/2 || 11/3 || 11/2 || 33/4 | |||
|- | |||
| 2/11 || 81/88 || 243/176 || 729/352 | |||
|- | |||
| 11/1 || 22/3 || 11/1 || 33/2 | |||
|- | |||
| 4/11 || 9/11 || 27/22 || 81/44 | |||
|- | |||
| 11/5 || 22/15 || 11/5 || 33/10 | |||
|- | |||
| 6/11 || 9/11 || 27/22 || 81/44 | |||
|- | |||
| 11/3 || 22/9 || 11/3 || 11/2 | |||
|- | |||
| 8/11 || 8/11 || 12/11 || 18/11 | |||
|- | |||
| 11/7 || 22/21 || 11/7 || 33/14 | |||
|- | |||
| 10/11 || 10/11 || 15/11 || 45/22 | |||
|- | |||
| 1/11 || 243/352 || 729/704 || 2187/1408 | |||
|- | |||
| 11/10 || 11/15 || 11/10 || 33/20 | |||
|- | |||
| 3/11 || 81/88 || 243/176 || 729/352 | |||
|- | |||
| 11/6 || 11/9 || 11/6 || 11/4 | |||
|- | |||
| 5/11 || 15/22 || 45/44 || 135/88 | |||
|- | |||
| 11/9 || 22/27 || 11/9 || 11/6 | |||
|- | |||
| 7/11 || 21/22 || 63/44 || 189/88 | |||
|- | |||
| 9/11 || 9/11 || 27/22 || 81/44 | |||
|} | |||
== 13-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 13/8 || 13/12 || 13/8 || 39/16 | |||
|- | |||
| 13/4 || 13/6 || 13/4 || 39/8 | |||
|- | |||
| 13/2 || 13/3 || 13/2 || 39/4 | |||
|- | |||
| 1/13 || 729/832 || 2187/1664 || 6561/3328 | |||
|- | |||
| 13/11 || 26/33 || 13/11 || 39/22 | |||
|- | |||
| 13/1 || 26/3 || 13/1 || 39/2 | |||
|- | |||
| 2/13 || 81/104 || 243/208 || 729/416 | |||
|- | |||
| 13/7 || 26/21 || 13/7 || 39/14 | |||
|- | |||
| 3/13 || 81/104 || 243/208 || 729/416 | |||
|- | |||
| 4/13 || 9/13 || 27/26 || 81/52 | |||
|- | |||
| 13/6 || 13/9 || 13/6 || 13/4 | |||
|- | |||
| 5/13 || 45/52 || 135/104 || 405/208 | |||
|- | |||
| 6/13 || 9/13 || 27/26 || 81/52 | |||
|- | |||
| 7/13 || 21/26 || 63/52 || 189/104 | |||
|- | |||
| 13/9 || 26/27 || 13/9 || 13/6 | |||
|- | |||
| 8/13 || 12/13 || 18/13 || 27/13 | |||
|- | |||
| 13/5 || 26/15 || 13/5 || 39/10 | |||
|- | |||
| 13/12 || 13/18 || 13/12 || 13/8 | |||
|- | |||
| 13/3 || 26/9 || 13/3 || 13/2 | |||
|- | |||
| 9/13 || 9/13 || 27/26 || 81/52 | |||
|- | |||
| 10/13 || 10/13 || 15/13 || 45/26 | |||
|- | |||
| 13/10 || 13/15 || 13/10 || 39/20 | |||
|- | |||
| 11/13 || 11/13 || 33/26 || 99/52 | |||
|- | |||
| 12/13 || 12/13 || 18/13 || 27/13 | |||
|} | |||
== 14-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 14/5 || 28/15 || 14/5 || 21/5 | |||
|- | |||
| 13/14 || 13/14 || 39/28 || 117/56 | |||
|- | |||
| 14/13 || 28/39 || 14/13 || 21/13 | |||
|- | |||
| 14/1 || 28/3 || 14/1 || 21/1 | |||
|- | |||
| 5/14 || 45/56 || 135/112 || 405/224 | |||
|- | |||
| 14/11 || 28/33 || 14/11 || 21/11 | |||
|- | |||
| 1/14 || 729/896 || 2187/1792 || 6561/3584 | |||
|- | |||
| 11/14 || 11/14 || 33/28 || 99/56 | |||
|} | |||
== 16-(3/2-odd)-limit == | |||
{| class="wikitable" | |||
|+ | |||
|- | |||
! Representative !! Subunison !! Inbounds !! Above 3/2 | |||
|- | |||
|- | |||
| 1/16 || 729/1024 || 2187/2048 || 6561/4096 | |||
|- | |||
| 5/16 || 45/64 || 135/128 || 405/256 | |||
|- | |||
| 13/16 || 13/16 || 39/32 || 117/64 | |||
|- | |||
| 7/16 || 63/64 || 189/128 || 567/256 | |||
|- | |||
| 11/16 || 11/16 || 33/32 || 99/64 | |||
|- | |||
| 16/1 || 32/3 || 16/1 || 24/1 | |||
|- | |||
| 16/13 || 32/39 || 16/13 || 24/13 | |||
|- | |||
| 16/5 || 32/15 || 16/5 || 24/5 | |||
|- | |||
| 16/7 || 32/21 || 16/7 || 24/7 | |||
|- | |||
| 16/11 || 32/33 || 16/11 || 24/11 | |||
|} |
Revision as of 17:26, 9 June 2024
These tables list interval classes under 3/2-equivalence ordered by complexity analogous to odd-limit.
The tables only list new entries. The limits contain all previous limits.
Note that every third table is empty similar to throdd-limit.
1-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above (or at) 3/2 |
---|---|---|---|
1/1 | 2/3 | 1/1 | 3/2 |
2-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
1/2 | 3/4 | 9/8 | 27/16 |
2/1 | 8/9 | 4/3 | 2/1 |
4-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
1/4 | 27/32 | 81/64 | 243/128 |
4/1 | 8/3 | 4/1 | 6/1 |
5-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
5/4 | 5/6 | 5/4 | 15/8 |
5/2 | 5/3 | 5/2 | 15/4 |
5/1 | 10/3 | 5/1 | 15/2 |
4/5 | 4/5 | 6/5 | 9/5 |
5/3 | 10/9 | 5/3 | 5/2 |
3/5 | 9/10 | 27/20 | 81/40 |
2/5 | 9/10 | 27/20 | 81/40 |
1/5 | 27/40 | 81/80 | 243/160 |
7-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
7/4 | 7/6 | 7/4 | 21/8 |
7/2 | 7/3 | 7/2 | 21/4 |
5/7 | 5/7 | 15/14 | 45/28 |
7/1 | 14/3 | 7/1 | 21/2 |
3/7 | 27/28 | 81/56 | 243/112 |
7/6 | 7/9 | 7/6 | 7/4 |
1/7 | 81/112 | 243/224 | 729/448 |
6/7 | 6/7 | 9/7 | 27/14 |
7/5 | 14/15 | 7/5 | 21/10 |
4/7 | 6/7 | 9/7 | 27/14 |
2/7 | 27/28 | 81/56 | 243/112 |
7/3 | 14/9 | 7/3 | 7/2 |
8-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
1/8 | 243/256 | 729/512 | 2187/1024 |
5/8 | 15/16 | 45/32 | 135/64 |
7/8 | 7/8 | 21/16 | 63/32 |
8/1 | 16/3 | 8/1 | 12/1 |
8/5 | 16/15 | 8/5 | 12/5 |
8/7 | 16/21 | 8/7 | 12/7 |
10-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
7/10 | 7/10 | 21/20 | 63/40 |
10/1 | 20/3 | 10/1 | 15/1 |
1/10 | 243/320 | 729/640 | 2187/1280 |
10/7 | 20/21 | 10/7 | 15/7 |
11-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
11/8 | 11/12 | 11/8 | 33/16 |
11/4 | 11/6 | 11/4 | 33/8 |
11/2 | 11/3 | 11/2 | 33/4 |
2/11 | 81/88 | 243/176 | 729/352 |
11/1 | 22/3 | 11/1 | 33/2 |
4/11 | 9/11 | 27/22 | 81/44 |
11/5 | 22/15 | 11/5 | 33/10 |
6/11 | 9/11 | 27/22 | 81/44 |
11/3 | 22/9 | 11/3 | 11/2 |
8/11 | 8/11 | 12/11 | 18/11 |
11/7 | 22/21 | 11/7 | 33/14 |
10/11 | 10/11 | 15/11 | 45/22 |
1/11 | 243/352 | 729/704 | 2187/1408 |
11/10 | 11/15 | 11/10 | 33/20 |
3/11 | 81/88 | 243/176 | 729/352 |
11/6 | 11/9 | 11/6 | 11/4 |
5/11 | 15/22 | 45/44 | 135/88 |
11/9 | 22/27 | 11/9 | 11/6 |
7/11 | 21/22 | 63/44 | 189/88 |
9/11 | 9/11 | 27/22 | 81/44 |
13-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
13/8 | 13/12 | 13/8 | 39/16 |
13/4 | 13/6 | 13/4 | 39/8 |
13/2 | 13/3 | 13/2 | 39/4 |
1/13 | 729/832 | 2187/1664 | 6561/3328 |
13/11 | 26/33 | 13/11 | 39/22 |
13/1 | 26/3 | 13/1 | 39/2 |
2/13 | 81/104 | 243/208 | 729/416 |
13/7 | 26/21 | 13/7 | 39/14 |
3/13 | 81/104 | 243/208 | 729/416 |
4/13 | 9/13 | 27/26 | 81/52 |
13/6 | 13/9 | 13/6 | 13/4 |
5/13 | 45/52 | 135/104 | 405/208 |
6/13 | 9/13 | 27/26 | 81/52 |
7/13 | 21/26 | 63/52 | 189/104 |
13/9 | 26/27 | 13/9 | 13/6 |
8/13 | 12/13 | 18/13 | 27/13 |
13/5 | 26/15 | 13/5 | 39/10 |
13/12 | 13/18 | 13/12 | 13/8 |
13/3 | 26/9 | 13/3 | 13/2 |
9/13 | 9/13 | 27/26 | 81/52 |
10/13 | 10/13 | 15/13 | 45/26 |
13/10 | 13/15 | 13/10 | 39/20 |
11/13 | 11/13 | 33/26 | 99/52 |
12/13 | 12/13 | 18/13 | 27/13 |
14-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
14/5 | 28/15 | 14/5 | 21/5 |
13/14 | 13/14 | 39/28 | 117/56 |
14/13 | 28/39 | 14/13 | 21/13 |
14/1 | 28/3 | 14/1 | 21/1 |
5/14 | 45/56 | 135/112 | 405/224 |
14/11 | 28/33 | 14/11 | 21/11 |
1/14 | 729/896 | 2187/1792 | 6561/3584 |
11/14 | 11/14 | 33/28 | 99/56 |
16-(3/2-odd)-limit
Representative | Subunison | Inbounds | Above 3/2 |
---|---|---|---|
1/16 | 729/1024 | 2187/2048 | 6561/4096 |
5/16 | 45/64 | 135/128 | 405/256 |
13/16 | 13/16 | 39/32 | 117/64 |
7/16 | 63/64 | 189/128 | 567/256 |
11/16 | 11/16 | 33/32 | 99/64 |
16/1 | 32/3 | 16/1 | 24/1 |
16/13 | 32/39 | 16/13 | 24/13 |
16/5 | 32/15 | 16/5 | 24/5 |
16/7 | 32/21 | 16/7 | 24/7 |
16/11 | 32/33 | 16/11 | 24/11 |