229edo: Difference between revisions

Eliora (talk | contribs)
Cleanup
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''229 equal divisions of the octave''' ('''229edo'''), or the '''229(-tone) equal temperament''' ('''229tet''', '''229et'''), is the [[EDO|equal division of the octave]] into 229 parts of about 5.24 [[cent]]s each.
{{EDO intro}}


== Theory ==
== Theory ==
While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is distinctly [[consistent]] in the [[11-odd-limit]]. It tempers out 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[1573/1568]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably [[support|supporting]] [[hemiwürschmidt]], [[newt]], and [[trident]].  
While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is [[consistency|distinctly consistent]] in the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[1573/1568]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably [[support|supporting]] [[hemiwürschmidt]], [[newt]], and [[trident]].  


The 229b val supports a [[septimal meantone]] close to the [[CTE tuning]].
The 229b [[val]] supports a [[septimal meantone]] close to the [[CTE tuning]].  
 
229edo is the 50th [[prime EDO]].


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|229|columns=11}}
{{Harmonics in equal|229|columns=11}}
=== Subsets and supersets ===
229edo is the 50th [[prime edo]].


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! rowspan="2" | Optimal 8ve <br>Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 25: Line 26:
| 2.3
| 2.3
| {{monzo| 363 -229 }}
| {{monzo| 363 -229 }}
| [{{val| 229 363 }}]
| {{mapping| 229 363 }}
| -0.072
| -0.072
| 0.072
| 0.072
Line 32: Line 33:
| 2.3.5
| 2.3.5
| 393216/390625, {{monzo| 39 -29 3 }}
| 393216/390625, {{monzo| 39 -29 3 }}
| [{{val| 229 363 532 }}]
| {{mapping| 229 363 532 }}
| -0.258
| -0.258
| 0.269
| 0.269
Line 39: Line 40:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 3136/3125, 14348907/14336000
| 2401/2400, 3136/3125, 14348907/14336000
| [{{val| 229 363 532 643 }}]
| {{mapping| 229 363 532 643 }}
| -0.247
| -0.247
| 0.233
| 0.233
Line 46: Line 47:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3025/3024, 3136/3125, 8019/8000
| 2401/2400, 3025/3024, 3136/3125, 8019/8000
| [{{val| 229 363 532 643 792 }}]
| {{mapping| 229 363 532 643 792 }}
| -0.134
| -0.134
| 0.308
| 0.308
Line 52: Line 53:
|-
|-
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 351/350, 1573/1568, 2080/2079, 3136/3125, 4096/4095
| 351/350, 1573/1568, 2080/2079, 2197/2187, 3136/3125
| [{{val| 229 363 532 643 792 847 }}]
| {{mapping| 229 363 532 643 792 847 }}
| -0.017
| -0.017
| 0.384
| 0.384
Line 59: Line 60:
|-
|-
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 351/350, 442/441, 561/560, 715/714, 3136/3125, 4096/4095
| 351/350, 442/441, 561/560, 715/714, 2197/2187, 3136/3125
| [{{val| 229 363 532 643 792 847 936 }}]
| {{mapping| 229 363 532 643 792 847 936 }}
| -0.009
| -0.009
| 0.356
| 0.356
Line 67: Line 68:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728
| 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728
| [{{val| 229 363 532 643 792 847 936 973 }}]
| {{mapping| 229 363 532 643 792 847 936 973 }}
| -0.043
| -0.043
| 0.344
| 0.344
Line 76: Line 77:
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator*
! Cents<br>(reduced)
! Cents*
! Associated<br>ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|16\229
| 16\229
|83.84
| 83.84
|16807/16000
| 16807/16000
|[[Sextilimeans]]
| [[Sextilimeans]]
|-
|-
| 1
| 1
Line 110: Line 111:
| 387.77
| 387.77
| 5/4
| 5/4
| [[Würschmidt]]
| [[Würschmidt]] (5-limit)
|-
|-
| 1
| 1
Line 128: Line 129:
| 565.94
| 565.94
| 18/13
| 18/13
| [[Tricot]] / [[trident]]
| [[Trident]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Prime EDO]]
[[Category:Würschmidt]]
[[Category:Würschmidt]]
[[Category:Hemiwürschmidt]]
[[Category:Hemiwürschmidt]]