34edo: Difference between revisions
→Music: +music |
Consolidate the irrational intervals into a single section as there's little contents about counterpoint as of now |
||
Line 414: | Line 414: | ||
Chords can be named using ups and downs as C upminor, D downmajor seven, etc. See [[Ups and Downs Notation #Chord names in other EDOs]]. | Chords can be named using ups and downs as C upminor, D downmajor seven, etc. See [[Ups and Downs Notation #Chord names in other EDOs]]. | ||
== JI | == Approximation to JI == | ||
Like [[17edo]], 34edo contains good approximations of just intervals involving 3, 11, and 13 – specifically, 13/8, 13/12, 13/11, 13/9, 11/9 and their inversions – while failing to closely approximate ratios of 7 given its step size. 34edo adds ratios of 5 into the mix – including 5/4, 6/5, 9/5, 15/8, 13/10, 15/13, and their inversions – as well as 17 – including 17/16, 18/17, 17/12, 17/11, 17/10, 17/13, 17/15 and their inversions. Since it distinguishes between 9/8 and 10/9 (exaggerating the difference between them, the [[syntonic comma]] of 81/80, from 21.5 cents to 35.3 cents), it is suitable for quasi-5-limit JI but is not a [[meantone]] system. While no number of fifths (3/2) land on major or minor thirds, an even number of major or minor thirds will be the same pitch as a pitch somewhere in the circle of seventeen fifths. | Like [[17edo]], 34edo contains good approximations of just intervals involving 3, 11, and 13 – specifically, 13/8, 13/12, 13/11, 13/9, 11/9 and their inversions – while failing to closely approximate ratios of 7 given its step size. 34edo adds ratios of 5 into the mix – including 5/4, 6/5, 9/5, 15/8, 13/10, 15/13, and their inversions – as well as 17 – including 17/16, 18/17, 17/12, 17/11, 17/10, 17/13, 17/15 and their inversions. Since it distinguishes between 9/8 and 10/9 (exaggerating the difference between them, the [[syntonic comma]] of 81/80, from 21.5 cents to 35.3 cents), it is suitable for quasi-5-limit JI but is not a [[meantone]] system. While no number of fifths (3/2) land on major or minor thirds, an even number of major or minor thirds will be the same pitch as a pitch somewhere in the circle of seventeen fifths. | ||
Line 423: | Line 423: | ||
=== Selected just intervals by error === | === Selected just intervals by error === | ||
The following table shows how [[15-odd-limit intervals]] are represented in 34edo. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | The following table shows how [[15-odd-limit intervals]] are represented in 34edo. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | ||
{{15-odd-limit|34}} | {{15-odd-limit|34}} | ||
{{15-odd-limit|34.1|title=15-odd-limit intervals by 34d val mapping}} | {{15-odd-limit|34.1|title=15-odd-limit intervals by 34d val mapping}} | ||
Line 430: | Line 429: | ||
In principle, one can approximate 34edo by ear using only 5-limit intervals, using the fact that 17edo is very close to a circle of seventeen [[25/24]] chromatic semitones to within 1.5 cents, and using a pure 5/4 which is less than 2 cents off for the second chain. The overall tuning error, assuming everything is tuned perfectly, will be less than 3.5 cents, or a relative error of less than 10%. | In principle, one can approximate 34edo by ear using only 5-limit intervals, using the fact that 17edo is very close to a circle of seventeen [[25/24]] chromatic semitones to within 1.5 cents, and using a pure 5/4 which is less than 2 cents off for the second chain. The overall tuning error, assuming everything is tuned perfectly, will be less than 3.5 cents, or a relative error of less than 10%. | ||
== Approximation to | == Approximation to irrational intervals == | ||
As a Fibonacci number, 34edo contains a fraction of an octave which is a close approximation to the [[logarithmic phi]] – 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[moment of symmetry]] scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and {{monzo| -6 2 6 0 0 -13 }}. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. (On the other hand, the frequency ratio phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and [[36edo]].) | As a Fibonacci number, 34edo contains a fraction of an octave which is a close approximation to the [[logarithmic phi]] – 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[moment of symmetry]] scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and {{monzo| -6 2 6 0 0 -13 }}. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. (On the other hand, the frequency ratio phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and [[36edo]].) | ||
=== Counterpoint === | |||
34edo has such an excellent [[sqrt(25/24)]] that the next edo to have a better one is [[441edo|441]]. Every sequence of intervals available in [[17edo]] are reachable by [[strict contrary motion]] in 34edo. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
Line 701: | Line 703: | ||
=== Kosmorsky's thoughts === | === Kosmorsky's thoughts === | ||
The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away – the double-sharp means a minor third away from the natural. This has led certain "complainers", in seeking to notate 17 edo, to create an extra character to raise something a small step of which. To render this symbol philosophically harmonious with 34 tone equal temperament, a symbol indicating an adjustment of 1/34 up or down serves the purpose by using two of it, doubled laterally or vertically as composer. This however emphasizes certain aspects of 34edo which ''may not be most efficient expressions of some musical purposes.'' Users can construct their own notation to the needs of the music and performer. As an example, a system with 15 "nominals" like A, B, C … F, instead of seven, might be waste – of paper, or space, or memory if they aren't used consecutively frequently. The system spelled out here has familiarity as an advantage and disadvantage. The spacing of the nominals and lines is the same. Dense chords of certain types would be very impossible to notate. Finally, the table uses ^ and v for "up" and "down", but these might be reserved for adjustments of 1/68th of an octave, being hollow, and filled in triangles are recommended. | The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away – the double-sharp means a minor third away from the natural. This has led certain "complainers", in seeking to notate 17 edo, to create an extra character to raise something a small step of which. To render this symbol philosophically harmonious with 34 tone equal temperament, a symbol indicating an adjustment of 1/34 up or down serves the purpose by using two of it, doubled laterally or vertically as composer. This however emphasizes certain aspects of 34edo which ''may not be most efficient expressions of some musical purposes.'' Users can construct their own notation to the needs of the music and performer. As an example, a system with 15 "nominals" like A, B, C … F, instead of seven, might be waste – of paper, or space, or memory if they aren't used consecutively frequently. The system spelled out here has familiarity as an advantage and disadvantage. The spacing of the nominals and lines is the same. Dense chords of certain types would be very impossible to notate. Finally, the table uses ^ and v for "up" and "down", but these might be reserved for adjustments of 1/68th of an octave, being hollow, and filled in triangles are recommended. | ||
== Music == | == Music == |