Andrew Heathwaite's MOS Investigations: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>Andrew_Heathwaite **Imported revision 270428564 - Original comment: ** |
Wikispaces>Andrew_Heathwaite **Imported revision 270457072 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-10-31 | : This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-10-31 19:46:20 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>270457072</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 25: | Line 25: | ||
...coming soon... | ...coming soon... | ||
Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then. | |||
==Modes of Porcupine[7]== | ==Modes of Porcupine[7]== | ||
The following modes are given in steps of 22edo. | The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a "-3" in the chain has a perfect fifth over the bass. | ||
3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6 | 3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6 | ||
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5 | 3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5 | ||
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4 | 3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4 | ||
3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3 | **3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3** | ||
3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2 | **3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2** | ||
3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1 | **3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1** | ||
4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0 | **4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0** | ||
==Modes of Porcupine[7] that have one chromatic alteration== | ==Modes of Porcupine[7] that have one chromatic alteration== | ||
The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one chroma means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. | The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded. | ||
2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8 | 2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8 | ||
4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7 | **4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7** | ||
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6 | 3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6 | ||
3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5 | **3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5** | ||
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4 | 3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4 | ||
3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3 | **3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3** | ||
4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2 | **4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2** | ||
2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9 | 2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9 | ||
3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1 | **3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1** | ||
4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0 | **4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0** | ||
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6 | 3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6 | ||
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5 | 3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5 | ||
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4 | 3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4 | ||
4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span> | **4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span>** | ||
2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8 | 2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8 | ||
4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0 | **4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0** | ||
3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6 | **3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6** | ||
3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves | **3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves** | ||
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4 | 3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4 | ||
4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4 | **4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4** | ||
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9 | 3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9 | ||
2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10 | 2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10 | ||
3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2 | **3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2** | ||
3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1 | **3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1** | ||
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0 | 4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0 | ||
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6 | 3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6 | ||
Line 76: | Line 78: | ||
2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8 | 2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8 | ||
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0 | 4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0 | ||
3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6 | **3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6** | ||
3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5 | **3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5** | ||
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4 | 4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4 | ||
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10 | 3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10 | ||
Line 83: | Line 85: | ||
2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11 | 2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11 | ||
3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3 | **3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3** | ||
3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2 | **3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2** | ||
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1 | 3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1 | ||
4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0 | **4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0** | ||
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6 | 3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6 | ||
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5 | 4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5 | ||
2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8 | **2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8** | ||
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0 | 4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0 | ||
3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves | **3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves** | ||
4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5 | **4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5** | ||
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11 | 3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11 | ||
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10 | 3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10 | ||
Line 100: | Line 102: | ||
2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12 | 2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12 | ||
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4 | 3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4 | ||
3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3 | **3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3** | ||
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2 | 3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2 | ||
3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1 | **3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1** | ||
4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0 | **4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0** | ||
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6 | 4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6 | ||
2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8 | **2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8** | ||
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0 | 4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0 | ||
4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7 | **4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7** | ||
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12 | 3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12 | ||
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11 | 3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11 | ||
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10 | 3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10 | ||
3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9 | **3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9** | ||
2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13 | 2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13 | ||
Line 118: | Line 120: | ||
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4 | 3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4 | ||
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3 | 3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3 | ||
3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2 | **3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2** | ||
3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1 | **3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1** | ||
5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0 | **5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0** | ||
2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8 | **2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8** | ||
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0 | 5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0 | ||
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13 | 3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13 | ||
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12 | 3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12 | ||
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11 | 3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11 | ||
3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10 | **3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10** | ||
3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9 | **3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9** | ||
Did I miss any???</pre></div> | Did I miss any???</pre></div> | ||
Line 144: | Line 146: | ||
<br /> | <br /> | ||
...coming soon...<br /> | ...coming soon...<br /> | ||
<br /> | |||
Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then.<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Porcupine Chromaticism-Modes of Porcupine[7]"></a><!-- ws:end:WikiTextHeadingRule:4 -->Modes of Porcupine[7]</h2> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Porcupine Chromaticism-Modes of Porcupine[7]"></a><!-- ws:end:WikiTextHeadingRule:4 -->Modes of Porcupine[7]</h2> | ||
<br /> | <br /> | ||
The following modes are given in steps of 22edo. | The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a &quot;-3&quot; in the chain has a perfect fifth over the bass.<br /> | ||
<br /> | <br /> | ||
3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6<br /> | 3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6<br /> | ||
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5<br /> | 3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5<br /> | ||
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4<br /> | 3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4<br /> | ||
3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3<br /> | <strong>3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3</strong><br /> | ||
3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2<br /> | <strong>3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2</strong><br /> | ||
3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1<br /> | <strong>3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1</strong><br /> | ||
4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0<br /> | <strong>4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0</strong><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Porcupine Chromaticism-Modes of Porcupine[7] that have one chromatic alteration"></a><!-- ws:end:WikiTextHeadingRule:6 -->Modes of Porcupine[7] that have one chromatic alteration</h2> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Porcupine Chromaticism-Modes of Porcupine[7] that have one chromatic alteration"></a><!-- ws:end:WikiTextHeadingRule:6 -->Modes of Porcupine[7] that have one chromatic alteration</h2> | ||
<br /> | <br /> | ||
The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one chroma means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain.<br /> | The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded.<br /> | ||
<br /> | <br /> | ||
2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8<br /> | 2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8<br /> | ||
4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7<br /> | <strong>4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7</strong><br /> | ||
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6<br /> | 3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6<br /> | ||
3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5<br /> | <strong>3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5</strong><br /> | ||
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4<br /> | 3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4<br /> | ||
3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3<br /> | <strong>3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3</strong><br /> | ||
4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2<br /> | <strong>4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2</strong><br /> | ||
<br /> | <br /> | ||
2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9<br /> | 2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9<br /> | ||
3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1<br /> | <strong>3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1</strong><br /> | ||
4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0<br /> | <strong>4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0</strong><br /> | ||
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6<br /> | 3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6<br /> | ||
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5<br /> | 3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5<br /> | ||
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4<br /> | 3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4<br /> | ||
4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span><br /> | <strong>4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span></strong><br /> | ||
<br /> | <br /> | ||
2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8<br /> | 2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8<br /> | ||
4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0<br /> | <strong>4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0</strong><br /> | ||
3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6<br /> | <strong>3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6</strong><br /> | ||
3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves<br /> | <strong>3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves</strong><br /> | ||
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4<br /> | 3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4<br /> | ||
4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4<br /> | <strong>4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4</strong><br /> | ||
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9<br /> | 3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9<br /> | ||
<br /> | <br /> | ||
2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10<br /> | 2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10<br /> | ||
3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2<br /> | <strong>3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2</strong><br /> | ||
3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1<br /> | <strong>3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1</strong><br /> | ||
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0<br /> | 4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0<br /> | ||
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6<br /> | 3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6<br /> | ||
Line 195: | Line 199: | ||
2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8<br /> | 2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8<br /> | ||
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0<br /> | 4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0<br /> | ||
3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6<br /> | <strong>3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6</strong><br /> | ||
3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5<br /> | <strong>3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5</strong><br /> | ||
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4<br /> | 4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4<br /> | ||
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10<br /> | 3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10<br /> | ||
Line 202: | Line 206: | ||
<br /> | <br /> | ||
2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11<br /> | 2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11<br /> | ||
3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3<br /> | <strong>3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3</strong><br /> | ||
3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2<br /> | <strong>3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2</strong><br /> | ||
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1<br /> | 3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1<br /> | ||
4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0<br /> | <strong>4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0</strong><br /> | ||
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6<br /> | 3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6<br /> | ||
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5<br /> | 4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5<br /> | ||
<br /> | <br /> | ||
2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8<br /> | <strong>2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8</strong><br /> | ||
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0<br /> | 4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0<br /> | ||
3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves<br /> | <strong>3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves</strong><br /> | ||
4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5<br /> | <strong>4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5</strong><br /> | ||
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11<br /> | 3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11<br /> | ||
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10<br /> | 3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10<br /> | ||
Line 219: | Line 223: | ||
2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12<br /> | 2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12<br /> | ||
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4<br /> | 3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4<br /> | ||
3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3<br /> | <strong>3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3</strong><br /> | ||
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2<br /> | 3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2<br /> | ||
3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1<br /> | <strong>3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1</strong><br /> | ||
4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0<br /> | <strong>4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0</strong><br /> | ||
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6<br /> | 4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6<br /> | ||
<br /> | <br /> | ||
2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8<br /> | <strong>2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8</strong><br /> | ||
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0<br /> | 4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0<br /> | ||
4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7<br /> | <strong>4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7</strong><br /> | ||
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12<br /> | 3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12<br /> | ||
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11<br /> | 3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11<br /> | ||
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10<br /> | 3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10<br /> | ||
3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9<br /> | <strong>3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9</strong><br /> | ||
<br /> | <br /> | ||
2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13<br /> | 2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13<br /> | ||
Line 237: | Line 241: | ||
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4<br /> | 3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4<br /> | ||
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3<br /> | 3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3<br /> | ||
3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2<br /> | <strong>3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2</strong><br /> | ||
3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1<br /> | <strong>3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1</strong><br /> | ||
5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0<br /> | <strong>5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0</strong><br /> | ||
<br /> | <br /> | ||
2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8<br /> | <strong>2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8</strong><br /> | ||
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0<br /> | 5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0<br /> | ||
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13<br /> | 3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13<br /> | ||
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12<br /> | 3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12<br /> | ||
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11<br /> | 3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11<br /> | ||
3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10<br /> | <strong>3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10</strong><br /> | ||
3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9<br /> | <strong>3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9</strong><br /> | ||
<br /> | <br /> | ||
Did I miss any???</body></html></pre></div> | Did I miss any???</body></html></pre></div> |
Revision as of 19:46, 31 October 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Andrew_Heathwaite and made on 2011-10-31 19:46:20 UTC.
- The original revision id was 270457072.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Ok, this is a page for me, Andrew Heathwaite, to organize my thoughts and questions regarding [[MOSScales|Moment of Symmetry Scales]]. Others are more than welcome to correct obvious errors, add clearly-demarked related material, and comment through the comments tab. My approach may be a little different than yours, but hopefully our approaches are compatible and you can tell me what you think. I certainly don't know everything, which is why this is an investigation! =Porcupine Temperament= I'm going to zoom in on [[Porcupine|Porcupine Temperament]], which has been mentioned on the Facebook Xenharmonic Alliance page recently as a xenharmonic alternative to Meantone. Here's a little list of some of the things that were mentioned, so they can be collected in one place and not lost forever in the impenetrable Facebook Caverns: * Keenan Pepper writes about how Porcupine tempers 27/20, 15/11 and 25/18 all to the 11/8 approximation, which, he claims, is a stronger consonance than any of the intervals mentioned. * Mike Battaglia writes about how 81/80 is "tempered in" to 25/24, making it melodically useful instead of an "irritating mystery interval" which "introduces pitch drift". * MB writes about Porcupine's [[MODMOS Scales|MODMOS]] scales (which I will deal with more below), summarizing, "<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>" * MB: "I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>." * Igliashon Jones argues that Porcupine doesn't do that great in the 5-limit after all, saying, "<span class="commentBody">Its only real selling-point over optimal meantone is simpler 7-limit and 11-limit approximations, but that assumes that these are a good in their own right and thus worth sacrificing some 5-limit efficiency; for anyone other than a dyed-in-the-wool xenharmonist, that's a questionable assumption to make.</span>" (As for me, I want those 7- and 11-limit approximations, and I could care less about a 5-limit temperament to rival meantone. I don't compose in 5-limit temperaments, period.) * In response to the above, Keenan Pepper says, "<span class="commentBody">You mentioned that almost every interval in the diatonic scale is a 9-limit consonance? Well, every interval in porcupine[7] is an 11-limit consonance! 1/1 10/9 9/8 6/5 5/4 4/3 11/8 16/11 3/2 8/5 5/3 16/9 9/5 2/1. Bam!</span>" (This is relevant to my work, which assumes composers want 11-limit approximations.) * I (Andrew Heathwaite) added, "<span class="commentBody">...maybe another description for what Porcupine is good for is a *gateway* from 5 and 7 to 11, for those comfortable with the former and curious about the latter. As a full 11-limit temperament, it is efficient and easy.</span>" =Porcupine Chromaticism= Mike Battaglia has brought up this idea of Porcupine Chromaticism and given MODMOS Scales of Porcupine as specific examples. So to start that exploration, I've made a diagram of all the MOS scales that Porcupine makes possible, starting at Porcupine[7], and terminating at [[140edo]], which is arguably an optimal tuning for Porcupine. Take a look: ...coming soon... Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then. ==Modes of Porcupine[7]== The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a "-3" in the chain has a perfect fifth over the bass. 3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6 3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5 3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4 **3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3** **3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2** **3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1** **4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0** ==Modes of Porcupine[7] that have one chromatic alteration== The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded. 2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8 **4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7** 3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6 **3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5** 3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4 **3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3** **4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2** 2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9 **3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1** **4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0** 3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6 3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5 3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4 **4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span>** 2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8 **4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0** **3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6** **3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves** 3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4 **4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4** 3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9 2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10 **3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2** **3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1** 4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0 3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6 3 4 2 3 3 4 3 .. -5 _ _ _ -1 0 1 _ 3 4 5 4 2 3 3 4 3 3 .. -6 _ _ _ -2 -1 0 _ 2 3 4 2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8 4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0 **3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6** **3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5** 4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4 3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10 3 2 4 3 3 4 3 .. -1 0 1 _ 3 4 5 _ _ _ 9 2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11 **3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3** **3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2** 3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1 **4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0** 3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6 4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5 **2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8** 4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0 **3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves** **4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5** 3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11 3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10 3 2 4 3 4 3 3 .. -2 -1 0 1 _ 3 4 _ _ _ _ 9 2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12 3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4 **3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3** 3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2 **3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1** **4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0** 4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6 **2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8** 4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0 **4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7** 3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12 3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11 3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10 **3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9** 2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13 3 3 3 3 3 5 2 .. -8 _ _ _ _ _ _ _ 0 1 2 3 4 5 3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4 3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3 **3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2** **3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1** **5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0** **2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8** 5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0 3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13 3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12 3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11 **3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10** **3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9** Did I miss any???
Original HTML content:
<html><head><title>Andrew Heathwaite's MOS Investigations</title></head><body>Ok, this is a page for me, Andrew Heathwaite, to organize my thoughts and questions regarding <a class="wiki_link" href="/MOSScales">Moment of Symmetry Scales</a>.<br /> Others are more than welcome to correct obvious errors, add clearly-demarked related material, and comment through the comments tab. My approach may be a little different than yours, but hopefully our approaches are compatible and you can tell me what you think. I certainly don't know everything, which is why this is an investigation!<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Porcupine Temperament"></a><!-- ws:end:WikiTextHeadingRule:0 -->Porcupine Temperament</h1> <br /> I'm going to zoom in on <a class="wiki_link" href="/Porcupine">Porcupine Temperament</a>, which has been mentioned on the Facebook Xenharmonic Alliance page recently as a xenharmonic alternative to Meantone. Here's a little list of some of the things that were mentioned, so they can be collected in one place and not lost forever in the impenetrable Facebook Caverns:<br /> <ul><li>Keenan Pepper writes about how Porcupine tempers 27/20, 15/11 and 25/18 all to the 11/8 approximation, which, he claims, is a stronger consonance than any of the intervals mentioned.</li><li>Mike Battaglia writes about how 81/80 is "tempered in" to 25/24, making it melodically useful instead of an "irritating mystery interval" which "introduces pitch drift".</li><li>MB writes about Porcupine's <a class="wiki_link" href="/MODMOS%20Scales">MODMOS</a> scales (which I will deal with more below), summarizing, "<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>"</li><li>MB: "I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>."</li><li>Igliashon Jones argues that Porcupine doesn't do that great in the 5-limit after all, saying, "<span class="commentBody">Its only real selling-point over optimal meantone is simpler 7-limit and 11-limit approximations, but that assumes that these are a good in their own right and thus worth sacrificing some 5-limit efficiency; for anyone other than a dyed-in-the-wool xenharmonist, that's a questionable assumption to make.</span>" (As for me, I want those 7- and 11-limit approximations, and I could care less about a 5-limit temperament to rival meantone. I don't compose in 5-limit temperaments, period.)</li><li>In response to the above, Keenan Pepper says, "<span class="commentBody">You mentioned that almost every interval in the diatonic scale is a 9-limit consonance? Well, every interval in porcupine[7] is an 11-limit consonance! 1/1 10/9 9/8 6/5 5/4 4/3 11/8 16/11 3/2 8/5 5/3 16/9 9/5 2/1. Bam!</span>" (This is relevant to my work, which assumes composers want 11-limit approximations.)</li><li>I (Andrew Heathwaite) added, "<span class="commentBody">...maybe another description for what Porcupine is good for is a *gateway* from 5 and 7 to 11, for those comfortable with the former and curious about the latter. As a full 11-limit temperament, it is efficient and easy.</span>"</li></ul><br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Porcupine Chromaticism"></a><!-- ws:end:WikiTextHeadingRule:2 -->Porcupine Chromaticism</h1> <br /> Mike Battaglia has brought up this idea of Porcupine Chromaticism and given MODMOS Scales of Porcupine as specific examples. So to start that exploration, I've made a diagram of all the MOS scales that Porcupine makes possible, starting at Porcupine[7], and terminating at <a class="wiki_link" href="/140edo">140edo</a>, which is arguably an optimal tuning for Porcupine. Take a look:<br /> <br /> ...coming soon...<br /> <br /> Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="Porcupine Chromaticism-Modes of Porcupine[7]"></a><!-- ws:end:WikiTextHeadingRule:4 -->Modes of Porcupine[7]</h2> <br /> The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a "-3" in the chain has a perfect fifth over the bass.<br /> <br /> 3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6<br /> 3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5<br /> 3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4<br /> <strong>3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3</strong><br /> <strong>3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2</strong><br /> <strong>3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1</strong><br /> <strong>4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0</strong><br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="Porcupine Chromaticism-Modes of Porcupine[7] that have one chromatic alteration"></a><!-- ws:end:WikiTextHeadingRule:6 -->Modes of Porcupine[7] that have one chromatic alteration</h2> <br /> The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded.<br /> <br /> 2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8<br /> <strong>4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7</strong><br /> 3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6<br /> <strong>3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5</strong><br /> 3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4<br /> <strong>3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3</strong><br /> <strong>4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2</strong><br /> <br /> 2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9<br /> <strong>3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1</strong><br /> <strong>4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0</strong><br /> 3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6<br /> 3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5<br /> 3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4<br /> <strong>4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span></strong><br /> <br /> 2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8<br /> <strong>4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0</strong><br /> <strong>3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6</strong><br /> <strong>3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves</strong><br /> 3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4<br /> <strong>4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4</strong><br /> 3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9<br /> <br /> 2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10<br /> <strong>3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2</strong><br /> <strong>3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1</strong><br /> 4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0<br /> 3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6<br /> 3 4 2 3 3 4 3 .. -5 _ _ _ -1 0 1 _ 3 4 5<br /> 4 2 3 3 4 3 3 .. -6 _ _ _ -2 -1 0 _ 2 3 4<br /> <br /> 2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8<br /> 4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0<br /> <strong>3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6</strong><br /> <strong>3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5</strong><br /> 4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4<br /> 3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10<br /> 3 2 4 3 3 4 3 .. -1 0 1 _ 3 4 5 _ _ _ 9<br /> <br /> 2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11<br /> <strong>3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3</strong><br /> <strong>3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2</strong><br /> 3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1<br /> <strong>4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0</strong><br /> 3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6<br /> 4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5<br /> <br /> <strong>2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8</strong><br /> 4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0<br /> <strong>3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves</strong><br /> <strong>4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5</strong><br /> 3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11<br /> 3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10<br /> 3 2 4 3 4 3 3 .. -2 -1 0 1 _ 3 4 _ _ _ _ 9<br /> <br /> 2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12<br /> 3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4<br /> <strong>3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3</strong><br /> 3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2<br /> <strong>3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1</strong><br /> <strong>4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0</strong><br /> 4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6<br /> <br /> <strong>2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8</strong><br /> 4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0<br /> <strong>4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7</strong><br /> 3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12<br /> 3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11<br /> 3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10<br /> <strong>3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9</strong><br /> <br /> 2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13<br /> 3 3 3 3 3 5 2 .. -8 _ _ _ _ _ _ _ 0 1 2 3 4 5<br /> 3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4<br /> 3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3<br /> <strong>3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2</strong><br /> <strong>3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1</strong><br /> <strong>5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0</strong><br /> <br /> <strong>2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8</strong><br /> 5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0<br /> 3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13<br /> 3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12<br /> 3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11<br /> <strong>3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10</strong><br /> <strong>3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9</strong><br /> <br /> Did I miss any???</body></html>