Andrew Heathwaite's MOS Investigations: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Andrew_Heathwaite
**Imported revision 270428564 - Original comment: **
Wikispaces>Andrew_Heathwaite
**Imported revision 270457072 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-10-31 17:45:22 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-10-31 19:46:20 UTC</tt>.<br>
: The original revision id was <tt>270428564</tt>.<br>
: The original revision id was <tt>270457072</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 25: Line 25:


...coming soon...
...coming soon...
Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then.


==Modes of Porcupine[7]==  
==Modes of Porcupine[7]==  


The following modes are given in steps of 22edo. To generalize, 3 stands for the neutral third generating interval, and 4 stands for the wide major second. On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator.
The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a "-3" in the chain has a perfect fifth over the bass.


3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6
3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4
3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3
**3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3**
3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2
**3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2**
3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1
**3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1**
4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0
**4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0**


==Modes of Porcupine[7] that have one chromatic alteration==  
==Modes of Porcupine[7] that have one chromatic alteration==  


The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one chroma means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain.
The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded.


2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8
2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8
4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7
**4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7**
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6
3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5
**3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5**
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4
3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3
**3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3**
4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2
**4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2**


2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9
2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9
3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1
**3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1**
4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0
**4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0**
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4
4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's&lt;span class="commentBody"&gt; Porcupine[7] 3|3 #2&lt;/span&gt;
**4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's&lt;span class="commentBody"&gt; Porcupine[7] 3|3 #2&lt;/span&gt;**


2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8
2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8
4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0
**4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0**
3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6
**3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6**
3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves
**3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves**
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4
4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4
**4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4**
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9


2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10
2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10
3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2
**3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2**
3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1
**3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1**
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6
Line 76: Line 78:
2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8
2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0
3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6
**3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6**
3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5
**3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5**
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10
Line 83: Line 85:


2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11
2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11
3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3
**3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3**
3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2
**3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2**
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1
4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0
**4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0**
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5


2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8
**2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8**
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0
3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves
**3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves**
4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5
**4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5**
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10
Line 100: Line 102:
2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12
2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4
3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3
**3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3**
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2
3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1
**3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1**
4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0
**4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0**
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6


2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8
**2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8**
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0
4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7
**4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7**
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10
3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9
**3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9**


2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13
2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13
Line 118: Line 120:
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3
3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2
**3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2**
3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1
**3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1**
5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0
**5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0**


2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8
**2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8**
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11
3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10
**3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10**
3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9
**3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9**


Did I miss any???</pre></div>
Did I miss any???</pre></div>
Line 144: Line 146:
&lt;br /&gt;
&lt;br /&gt;
...coming soon...&lt;br /&gt;
...coming soon...&lt;br /&gt;
&lt;br /&gt;
Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Porcupine Chromaticism-Modes of Porcupine[7]"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Modes of Porcupine[7]&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Porcupine Chromaticism-Modes of Porcupine[7]"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Modes of Porcupine[7]&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
The following modes are given in steps of 22edo. To generalize, 3 stands for the neutral third generating interval, and 4 stands for the wide major second. On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator.&lt;br /&gt;
The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a &amp;quot;-3&amp;quot; in the chain has a perfect fifth over the bass.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6&lt;br /&gt;
3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6&lt;br /&gt;
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5&lt;br /&gt;
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5&lt;br /&gt;
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4&lt;br /&gt;
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4&lt;br /&gt;
3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3&lt;br /&gt;
&lt;strong&gt;3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3&lt;/strong&gt;&lt;br /&gt;
3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2&lt;br /&gt;
&lt;strong&gt;3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2&lt;/strong&gt;&lt;br /&gt;
3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1&lt;br /&gt;
&lt;strong&gt;3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1&lt;/strong&gt;&lt;br /&gt;
4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0&lt;br /&gt;
&lt;strong&gt;4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Porcupine Chromaticism-Modes of Porcupine[7] that have one chromatic alteration"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Modes of Porcupine[7] that have one chromatic alteration&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Porcupine Chromaticism-Modes of Porcupine[7] that have one chromatic alteration"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Modes of Porcupine[7] that have one chromatic alteration&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one chroma means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain.&lt;br /&gt;
The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8&lt;br /&gt;
2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8&lt;br /&gt;
4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7&lt;br /&gt;
&lt;strong&gt;4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7&lt;/strong&gt;&lt;br /&gt;
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6&lt;br /&gt;
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6&lt;br /&gt;
3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5&lt;br /&gt;
&lt;strong&gt;3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5&lt;/strong&gt;&lt;br /&gt;
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4&lt;br /&gt;
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4&lt;br /&gt;
3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3&lt;br /&gt;
&lt;strong&gt;3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3&lt;/strong&gt;&lt;br /&gt;
4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2&lt;br /&gt;
&lt;strong&gt;4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9&lt;br /&gt;
2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9&lt;br /&gt;
3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1&lt;br /&gt;
&lt;strong&gt;3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1&lt;/strong&gt;&lt;br /&gt;
4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0&lt;br /&gt;
&lt;strong&gt;4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0&lt;/strong&gt;&lt;br /&gt;
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6&lt;br /&gt;
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6&lt;br /&gt;
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5&lt;br /&gt;
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5&lt;br /&gt;
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4&lt;br /&gt;
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4&lt;br /&gt;
4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's&lt;span class="commentBody"&gt; Porcupine[7] 3|3 #2&lt;/span&gt;&lt;br /&gt;
&lt;strong&gt;4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's&lt;span class="commentBody"&gt; Porcupine[7] 3|3 #2&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8&lt;br /&gt;
2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8&lt;br /&gt;
4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0&lt;br /&gt;
&lt;strong&gt;4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0&lt;/strong&gt;&lt;br /&gt;
3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6&lt;br /&gt;
&lt;strong&gt;3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6&lt;/strong&gt;&lt;br /&gt;
3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves&lt;br /&gt;
&lt;strong&gt;3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves&lt;/strong&gt;&lt;br /&gt;
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4&lt;br /&gt;
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4&lt;br /&gt;
4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4&lt;br /&gt;
&lt;strong&gt;4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4&lt;/strong&gt;&lt;br /&gt;
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9&lt;br /&gt;
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10&lt;br /&gt;
2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10&lt;br /&gt;
3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2&lt;br /&gt;
&lt;strong&gt;3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2&lt;/strong&gt;&lt;br /&gt;
3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1&lt;br /&gt;
&lt;strong&gt;3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1&lt;/strong&gt;&lt;br /&gt;
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0&lt;br /&gt;
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0&lt;br /&gt;
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6&lt;br /&gt;
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6&lt;br /&gt;
Line 195: Line 199:
2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8&lt;br /&gt;
2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8&lt;br /&gt;
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0&lt;br /&gt;
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0&lt;br /&gt;
3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6&lt;br /&gt;
&lt;strong&gt;3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6&lt;/strong&gt;&lt;br /&gt;
3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5&lt;br /&gt;
&lt;strong&gt;3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5&lt;/strong&gt;&lt;br /&gt;
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4&lt;br /&gt;
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4&lt;br /&gt;
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10&lt;br /&gt;
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10&lt;br /&gt;
Line 202: Line 206:
&lt;br /&gt;
&lt;br /&gt;
2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11&lt;br /&gt;
2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11&lt;br /&gt;
3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3&lt;br /&gt;
&lt;strong&gt;3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3&lt;/strong&gt;&lt;br /&gt;
3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2&lt;br /&gt;
&lt;strong&gt;3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2&lt;/strong&gt;&lt;br /&gt;
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1&lt;br /&gt;
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1&lt;br /&gt;
4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0&lt;br /&gt;
&lt;strong&gt;4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0&lt;/strong&gt;&lt;br /&gt;
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6&lt;br /&gt;
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6&lt;br /&gt;
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5&lt;br /&gt;
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8&lt;br /&gt;
&lt;strong&gt;2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8&lt;/strong&gt;&lt;br /&gt;
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0&lt;br /&gt;
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0&lt;br /&gt;
3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves&lt;br /&gt;
&lt;strong&gt;3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves&lt;/strong&gt;&lt;br /&gt;
4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5&lt;br /&gt;
&lt;strong&gt;4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5&lt;/strong&gt;&lt;br /&gt;
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11&lt;br /&gt;
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11&lt;br /&gt;
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10&lt;br /&gt;
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10&lt;br /&gt;
Line 219: Line 223:
2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12&lt;br /&gt;
2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12&lt;br /&gt;
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4&lt;br /&gt;
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4&lt;br /&gt;
3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3&lt;br /&gt;
&lt;strong&gt;3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3&lt;/strong&gt;&lt;br /&gt;
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2&lt;br /&gt;
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2&lt;br /&gt;
3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1&lt;br /&gt;
&lt;strong&gt;3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1&lt;/strong&gt;&lt;br /&gt;
4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0&lt;br /&gt;
&lt;strong&gt;4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0&lt;/strong&gt;&lt;br /&gt;
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6&lt;br /&gt;
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8&lt;br /&gt;
&lt;strong&gt;2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8&lt;/strong&gt;&lt;br /&gt;
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0&lt;br /&gt;
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0&lt;br /&gt;
4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7&lt;br /&gt;
&lt;strong&gt;4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7&lt;/strong&gt;&lt;br /&gt;
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12&lt;br /&gt;
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12&lt;br /&gt;
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11&lt;br /&gt;
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11&lt;br /&gt;
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10&lt;br /&gt;
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10&lt;br /&gt;
3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9&lt;br /&gt;
&lt;strong&gt;3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13&lt;br /&gt;
2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13&lt;br /&gt;
Line 237: Line 241:
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4&lt;br /&gt;
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4&lt;br /&gt;
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3&lt;br /&gt;
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3&lt;br /&gt;
3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2&lt;br /&gt;
&lt;strong&gt;3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2&lt;/strong&gt;&lt;br /&gt;
3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1&lt;br /&gt;
&lt;strong&gt;3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1&lt;/strong&gt;&lt;br /&gt;
5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0&lt;br /&gt;
&lt;strong&gt;5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8&lt;br /&gt;
&lt;strong&gt;2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8&lt;/strong&gt;&lt;br /&gt;
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0&lt;br /&gt;
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0&lt;br /&gt;
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13&lt;br /&gt;
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13&lt;br /&gt;
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12&lt;br /&gt;
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12&lt;br /&gt;
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11&lt;br /&gt;
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11&lt;br /&gt;
3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10&lt;br /&gt;
&lt;strong&gt;3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10&lt;/strong&gt;&lt;br /&gt;
3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9&lt;br /&gt;
&lt;strong&gt;3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Did I miss any???&lt;/body&gt;&lt;/html&gt;</pre></div>
Did I miss any???&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 19:46, 31 October 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2011-10-31 19:46:20 UTC.
The original revision id was 270457072.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Ok, this is a page for me, Andrew Heathwaite, to organize my thoughts and questions regarding [[MOSScales|Moment of Symmetry Scales]].
Others are more than welcome to correct obvious errors, add clearly-demarked related material, and comment through the comments tab. My approach may be a little different than yours, but hopefully our approaches are compatible and you can tell me what you think. I certainly don't know everything, which is why this is an investigation!

=Porcupine Temperament= 

I'm going to zoom in on [[Porcupine|Porcupine Temperament]], which has been mentioned on the Facebook Xenharmonic Alliance page recently as a xenharmonic alternative to Meantone. Here's a little list of some of the things that were mentioned, so they can be collected in one place and not lost forever in the impenetrable Facebook Caverns:
* Keenan Pepper writes about how Porcupine tempers 27/20, 15/11 and 25/18 all to the 11/8 approximation, which, he claims, is a stronger consonance than any of the intervals mentioned.
* Mike Battaglia writes about how 81/80 is "tempered in" to 25/24, making it melodically useful instead of an "irritating mystery interval" which "introduces pitch drift".
* MB writes about Porcupine's [[MODMOS Scales|MODMOS]] scales (which I will deal with more below), summarizing, "<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>"
* MB: "I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>."
* Igliashon Jones argues that Porcupine doesn't do that great in the 5-limit after all, saying, "<span class="commentBody">Its only real selling-point over optimal meantone is simpler 7-limit and 11-limit approximations, but that assumes that these are a good in their own right and thus worth sacrificing some 5-limit efficiency; for anyone other than a dyed-in-the-wool xenharmonist, that's a questionable assumption to make.</span>" (As for me, I want those 7- and 11-limit approximations, and I could care less about a 5-limit temperament to rival meantone. I don't compose in 5-limit temperaments, period.)
* In response to the above, Keenan Pepper says, "<span class="commentBody">You mentioned that almost every interval in the diatonic scale is a 9-limit consonance? Well, every interval in porcupine[7] is an 11-limit consonance! 1/1 10/9 9/8 6/5 5/4 4/3 11/8 16/11 3/2 8/5 5/3 16/9 9/5 2/1. Bam!</span>" (This is relevant to my work, which assumes composers want 11-limit approximations.)
* I (Andrew Heathwaite) added, "<span class="commentBody">...maybe another description for what Porcupine is good for is a *gateway* from 5 and 7 to 11, for those comfortable with the former and curious about the latter. As a full 11-limit temperament, it is efficient and easy.</span>"

=Porcupine Chromaticism= 

Mike Battaglia has brought up this idea of Porcupine Chromaticism and given MODMOS Scales of Porcupine as specific examples. So to start that exploration, I've made a diagram of all the MOS scales that Porcupine makes possible, starting at Porcupine[7], and terminating at [[140edo]], which is arguably an optimal tuning for Porcupine. Take a look:

...coming soon...

Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then.

==Modes of Porcupine[7]== 

The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a "-3" in the chain has a perfect fifth over the bass.

3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4
**3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3**
**3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2**
**3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1**
**4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0**

==Modes of Porcupine[7] that have one chromatic alteration== 

The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded.

2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8
**4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7**
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6
**3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5**
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4
**3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3**
**4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2**

2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9
**3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1**
**4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0**
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4
**4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span>**

2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8
**4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0**
**3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6**
**3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves**
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4
**4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4**
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9

2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10
**3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2**
**3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1**
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6
3 4 2 3 3 4 3 .. -5 _ _ _ -1 0 1 _ 3 4 5
4 2 3 3 4 3 3 .. -6 _ _ _ -2 -1 0 _ 2 3 4

2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0
**3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6**
**3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5**
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10
3 2 4 3 3 4 3 .. -1 0 1 _ 3 4 5 _ _ _ 9

2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11
**3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3**
**3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2**
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1
**4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0**
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5

**2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8**
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0
**3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves**
**4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5**
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10
3 2 4 3 4 3 3 .. -2 -1 0 1 _ 3 4 _ _ _ _ 9

2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4
**3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3**
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2
**3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1**
**4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0**
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6

**2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8**
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0
**4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7**
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10
**3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9**

2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13
3 3 3 3 3 5 2 .. -8 _ _ _ _ _ _ _ 0 1 2 3 4 5
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3
**3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2**
**3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1**
**5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0**

**2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8**
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11
**3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10**
**3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9**

Did I miss any???

Original HTML content:

<html><head><title>Andrew Heathwaite's MOS Investigations</title></head><body>Ok, this is a page for me, Andrew Heathwaite, to organize my thoughts and questions regarding <a class="wiki_link" href="/MOSScales">Moment of Symmetry Scales</a>.<br />
Others are more than welcome to correct obvious errors, add clearly-demarked related material, and comment through the comments tab. My approach may be a little different than yours, but hopefully our approaches are compatible and you can tell me what you think. I certainly don't know everything, which is why this is an investigation!<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Porcupine Temperament"></a><!-- ws:end:WikiTextHeadingRule:0 -->Porcupine Temperament</h1>
 <br />
I'm going to zoom in on <a class="wiki_link" href="/Porcupine">Porcupine Temperament</a>, which has been mentioned on the Facebook Xenharmonic Alliance page recently as a xenharmonic alternative to Meantone. Here's a little list of some of the things that were mentioned, so they can be collected in one place and not lost forever in the impenetrable Facebook Caverns:<br />
<ul><li>Keenan Pepper writes about how Porcupine tempers 27/20, 15/11 and 25/18 all to the 11/8 approximation, which, he claims, is a stronger consonance than any of the intervals mentioned.</li><li>Mike Battaglia writes about how 81/80 is &quot;tempered in&quot; to 25/24, making it melodically useful instead of an &quot;irritating mystery interval&quot; which &quot;introduces pitch drift&quot;.</li><li>MB writes about Porcupine's <a class="wiki_link" href="/MODMOS%20Scales">MODMOS</a> scales (which I will deal with more below), summarizing, &quot;<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>&quot;</li><li>MB: &quot;I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>.&quot;</li><li>Igliashon Jones argues that Porcupine doesn't do that great in the 5-limit after all, saying, &quot;<span class="commentBody">Its only real selling-point over optimal meantone is simpler 7-limit and 11-limit approximations, but that assumes that these are a good in their own right and thus worth sacrificing some 5-limit efficiency; for anyone other than a dyed-in-the-wool xenharmonist, that's a questionable assumption to make.</span>&quot; (As for me, I want those 7- and 11-limit approximations, and I could care less about a 5-limit temperament to rival meantone. I don't compose in 5-limit temperaments, period.)</li><li>In response to the above, Keenan Pepper says, &quot;<span class="commentBody">You mentioned that almost every interval in the diatonic scale is a 9-limit consonance? Well, every interval in porcupine[7] is an 11-limit consonance! 1/1 10/9 9/8 6/5 5/4 4/3 11/8 16/11 3/2 8/5 5/3 16/9 9/5 2/1. Bam!</span>&quot; (This is relevant to my work, which assumes composers want 11-limit approximations.)</li><li>I (Andrew Heathwaite) added, &quot;<span class="commentBody">...maybe another description for what Porcupine is good for is a *gateway* from 5 and 7 to 11, for those comfortable with the former and curious about the latter. As a full 11-limit temperament, it is efficient and easy.</span>&quot;</li></ul><br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Porcupine Chromaticism"></a><!-- ws:end:WikiTextHeadingRule:2 -->Porcupine Chromaticism</h1>
 <br />
Mike Battaglia has brought up this idea of Porcupine Chromaticism and given MODMOS Scales of Porcupine as specific examples. So to start that exploration, I've made a diagram of all the MOS scales that Porcupine makes possible, starting at Porcupine[7], and terminating at <a class="wiki_link" href="/140edo">140edo</a>, which is arguably an optimal tuning for Porcupine. Take a look:<br />
<br />
...coming soon...<br />
<br />
Hm, try as I might, I can't get wikispaces to upload this image. Nevermind then.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Porcupine Chromaticism-Modes of Porcupine[7]"></a><!-- ws:end:WikiTextHeadingRule:4 -->Modes of Porcupine[7]</h2>
 <br />
The following modes are given in steps of 22edo. They are rotations of one moment of symmetry scale with two step sizes: a neutral tone (3\22) and a large whole tone (4\22). On the right is a contiguous chain of 7 tones separated by 6 iterations of the Porcupine generator. Modes in bold have a 3/2 approximation above the bass -- this can be verified easily by looking at the chain. The perfect fifth approximation is -3g, so every mode with a &quot;-3&quot; in the chain has a perfect fifth over the bass.<br />
<br />
3 3 3 3 3 3 4 .. 0 1 2 3 4 5 6<br />
3 3 3 3 3 4 3 .. -1 0 1 2 3 4 5<br />
3 3 3 3 4 3 3 .. -2 -1 0 1 2 3 4<br />
<strong>3 3 3 4 3 3 3 .. -3 -2 -1 0 1 2 3</strong><br />
<strong>3 3 4 3 3 3 3 .. -4 -3 -2 -1 0 1 2</strong><br />
<strong>3 4 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 1</strong><br />
<strong>4 3 3 3 3 3 3 .. -6 -5 -4 -3 -2 -1 0</strong><br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Porcupine Chromaticism-Modes of Porcupine[7] that have one chromatic alteration"></a><!-- ws:end:WikiTextHeadingRule:6 -->Modes of Porcupine[7] that have one chromatic alteration</h2>
 <br />
The following list includes all the modes (hopefully) that can be generated by shifting one tone of Porcupine[7] by one quartertone interval (chroma), which is one degree in 22edo. This produces scales with three step sizes -- in addition to a neutral tone (3\22) and large whole tone (4\22) there is now a semitone as well (2\22). In addition, two scales (and their rotations of course) have a 5-step subminor third. Underscores represent gaps in the chain of Porcupine generators. Note that lowering a tone by one quartertone interval (chroma) means sending it forward 7 spaces in the chain of generators, while raising a tone by one chroma means sending it backward 7 spaces in the chain of generators. This is how we wind up with such large gaps in the chain. Again, modes with perfect fifths from the bass are bolded.<br />
<br />
2 4 3 3 3 3 4 .. 0 _ 2 3 4 5 6 _ 8<br />
<strong>4 3 3 3 3 4 2 .. -8 _ -6 -5 -4 -3 -2 _ 0 === Mike Battaglia's Porcupine[7] 0|6 #7</strong><br />
3 3 3 3 4 2 4 .. -2 _ 0 1 2 3 4 _ 6<br />
<strong>3 3 3 4 2 4 3 .. -3 _ -1 0 1 2 3 _ 5</strong><br />
3 3 4 2 4 3 3 .. -4 _ -2 -1 0 1 2 _ 4<br />
<strong>3 4 2 4 3 3 3 .. -5 _ -3 -2 -1 0 1 _ 3</strong><br />
<strong>4 2 4 3 3 3 3 .. -6 _ -4 -3 -2 -1 0 _ 2</strong><br />
<br />
2 3 4 3 3 3 4 .. 0 _ _ 3 4 5 6 _ 8 9<br />
<strong>3 4 3 3 3 4 2 .. -8 _ _ -5 -4 -3 -2 _ 0 1</strong><br />
<strong>4 3 3 3 4 2 3 .. -9 _ _ -6 -5 -4 -3 _ -1 0</strong><br />
3 3 3 4 2 3 4 .. -3 _ _ 0 1 2 3 _ 5 6<br />
3 3 4 2 3 4 3 .. -4 _ _ -1 0 1 2 _ 4 5<br />
3 4 2 3 4 3 3 .. -5 _ _ -2 -1 0 1 _ 3 4<br />
<strong>4 2 3 4 3 3 3 .. -6 _ _ -3 -2 -1 0 _ 1 2 === Mike Battaglia's<span class="commentBody"> Porcupine[7] 3|3 #2</span></strong><br />
<br />
2 4 3 3 3 4 3 .. -1 0 _ 2 3 4 5 _ _ 8<br />
<strong>4 3 3 3 4 3 2 .. -9 -8 _ -6 -5 -4 -3 _ _ 0</strong><br />
<strong>3 3 3 4 3 2 4 .. -3 -2 _ 0 1 2 3 _ _ 6</strong><br />
<strong>3 3 4 3 2 4 3 .. -4 -3 _ -1 0 1 2 _ _ 5 === one of Andrew's faves</strong><br />
3 4 3 2 4 3 3 .. -5 -4 _ -2 -1 0 1 _ _ 4<br />
<strong>4 3 2 4 3 3 3 .. -6 -5 _ -3 -2 -1 0 _ _ 3 === Mike Battaglia's Porcupine[7] 0|6 b4</strong><br />
3 2 4 3 3 3 4 .. 0 1 _ 3 4 5 6 _ _ 9<br />
<br />
2 3 3 4 3 3 4 .. 0 _ _ _ 4 5 6 _ 8 9 10<br />
<strong>3 3 4 3 3 4 2 .. -8 _ _ _ -4 -3 -2 _ 0 1 2</strong><br />
<strong>3 4 3 3 4 2 3 .. -9 _ _ _ -5 -4 -3 _ -1 0 1</strong><br />
4 3 3 4 2 3 3 .. -10 _ _ _ -6 -5 -4 _ -2 -1 0<br />
3 3 4 2 3 3 4 .. -4 _ _ _ 0 1 2 _ 4 5 6<br />
3 4 2 3 3 4 3 .. -5 _ _ _ -1 0 1 _ 3 4 5<br />
4 2 3 3 4 3 3 .. -6 _ _ _ -2 -1 0 _ 2 3 4<br />
<br />
2 4 3 3 4 3 3 .. -2 -1 0 _ 2 3 4 _ _ _ 8<br />
4 3 3 4 3 3 2 .. -10 -9 -8 _ -6 -5 -4 _ _ _ 0<br />
<strong>3 3 4 3 3 2 4 .. -4 -3 -2 _ 0 1 2 _ _ _ 6</strong><br />
<strong>3 4 3 3 2 4 3 .. -5 -4 -3 _ -1 0 1 _ _ _ 5</strong><br />
4 3 3 2 4 3 3 .. -6 -5 -4 _ -2 -1 0 _ _ _ 4<br />
3 3 2 4 3 3 4 .. 0 1 2 _ 4 5 6 _ _ _ 10<br />
3 2 4 3 3 4 3 .. -1 0 1 _ 3 4 5 _ _ _ 9<br />
<br />
2 3 3 3 4 3 4 .. 0 _ _ _ _ 5 6 _ 8 9 10 11<br />
<strong>3 3 3 4 3 4 2 .. -8 _ _ _ _ -3 -2 _ 0 1 2 3</strong><br />
<strong>3 3 4 3 4 2 3 .. -9 _ _ _ _ -4 -3 _ -1 0 1 2</strong><br />
3 4 3 4 2 3 3 .. -10 _ _ _ _ -5 -4 _ -2 -1 0 1<br />
<strong>4 3 4 2 3 3 3 .. -11 _ _ _ _ -6 -5 _ -3 -2 -1 0</strong><br />
3 4 2 3 3 3 4 .. -5 _ _ _ _ 0 1 _ 3 4 5 6<br />
4 2 3 3 3 4 3 .. -6 _ _ _ _ -1 0 _ 2 3 4 5<br />
<br />
<strong>2 4 3 4 3 3 3 .. -3 -2 -1 0 _ 2 3 _ _ _ _ 8</strong><br />
4 3 4 3 3 3 2 .. -11 -10 -9 -8 _ -6 -5 _ _ _ _ 0<br />
<strong>3 4 3 3 3 2 4 .. -5 -4 -3 -2 _ 0 1 _ _ _ _ 6 === one of Andrew's faves</strong><br />
<strong>4 3 3 3 2 4 3 .. -6 -5 -4 -3 _ -1 0 _ _ _ _ 5</strong><br />
3 3 3 2 4 3 4 .. 0 1 2 3 _ 5 6 _ _ _ _ 11<br />
3 3 2 4 3 4 3 .. -1 0 1 2 _ 4 5 _ _ _ _ 10<br />
3 2 4 3 4 3 3 .. -2 -1 0 1 _ 3 4 _ _ _ _ 9<br />
<br />
2 3 3 3 3 4 4 .. 0 _ _ _ _ _ 6 _ 8 9 10 11 12<br />
3 3 3 3 4 4 2 .. -8 _ _ _ _ _ -2 _ 0 1 2 3 4<br />
<strong>3 3 3 4 4 2 3 .. -9 _ _ _ _ _ -3 _ -1 0 1 2 3</strong><br />
3 3 4 4 2 3 3 .. -10 _ _ _ _ _ -4 _ -2 -1 0 1 2<br />
<strong>3 4 4 2 3 3 3 .. -11 _ _ _ _ _ -5 _ -3 -2 -1 0 1</strong><br />
<strong>4 4 2 3 3 3 3 .. -12 _ _ _ _ _ -6 _ -4 -3 -2 -1 0</strong><br />
4 2 3 3 3 3 4 .. -6 _ _ _ _ _ 0 _ 2 3 4 5 6<br />
<br />
<strong>2 4 4 3 3 3 3 .. -4 -3 -2 -1 0 _ 2 _ _ _ _ _ 8</strong><br />
4 4 3 3 3 3 2 .. -12 -11 -10 -9 -8 _ -6 _ _ _ _ _ 0<br />
<strong>4 3 3 3 3 2 4 .. -6 -5 -4 -3 -2 _ 0 _ _ _ _ _ 6 === Mike Battaglia's Porcupine[7] 0|6 b7</strong><br />
3 3 3 3 2 4 4 .. 0 1 2 3 4 _ 6 _ _ _ _ _ 12<br />
3 3 3 2 4 4 3 .. -1 0 1 2 3 _ 5 _ _ _ _ _ 11<br />
3 3 2 4 4 3 3 .. -2 -1 0 1 2 _ 4 _ _ _ _ _ 10<br />
<strong>3 2 4 4 3 3 3 .. -3 -2 -1 0 1 _ 3 _ _ _ _ _ 9</strong><br />
<br />
2 3 3 3 3 3 5 .. 0 _ _ _ _ _ _ _ 8 9 10 11 12 13<br />
3 3 3 3 3 5 2 .. -8 _ _ _ _ _ _ _ 0 1 2 3 4 5<br />
3 3 3 3 5 2 3 .. -9 _ _ _ _ _ _ _ -1 0 1 2 3 4<br />
3 3 3 5 2 3 3 .. -10 _ _ _ _ _ _ _ -2 -1 0 1 2 3<br />
<strong>3 3 5 2 3 3 3 .. -11 _ _ _ _ _ _ _ -3 -2 -1 0 1 2</strong><br />
<strong>3 5 2 3 3 3 3 .. -12 _ _ _ _ _ _ _ -4 -3 -2 -1 0 1</strong><br />
<strong>5 2 3 3 3 3 3 .. -13 _ _ _ _ _ _ _ -5 -4 -3 -2 -1 0</strong><br />
<br />
<strong>2 5 3 3 3 3 3 .. -5 -4 -3 -2 -1 0 _ _ _ _ _ _ _ 8</strong><br />
5 3 3 3 3 3 2 .. -13 -12 -11 -10 -9 -8 _ _ _ _ _ _ _ 0<br />
3 3 3 3 3 2 5 .. 0 1 2 3 4 5 _ _ _ _ _ _ _ 13<br />
3 3 3 3 2 5 3 .. -1 0 1 2 3 4 _ _ _ _ _ _ _ 12<br />
3 3 3 2 5 3 3 .. -2 -1 0 1 2 3 _ _ _ _ _ _ _ 11<br />
<strong>3 3 2 5 3 3 3 .. -3 -2 -1 0 1 2 _ _ _ _ _ _ _ 10</strong><br />
<strong>3 2 5 3 3 3 3 .. -4 -3 -2 -1 0 1 _ _ _ _ _ _ _ 9</strong><br />
<br />
Did I miss any???</body></html>