97edo: Difference between revisions

Eliora (talk | contribs)
listen
Cleanup
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|97}}
{{EDO intro|97}}
== Theory ==
== Theory ==
{{primes in edo|97}}
In the [[patent val]], 97edo tempers out 875/864, 4000/3969 and 1029/1024 in the 7-limit, 245/242, 100/99, 385/384 and 441/440 in the 11-limit, and 196/195, 352/351 and 676/675 in the 13-limit. It provides the optimal patent val for the 13-limit 41&97 temperament tempering out 100/99, 196/195, 245/242 and 385/384. 97edo is the 25th prime edo.


97edo tempers out 875/864, 4000/3969 and 1029/1024 in the 7-limit, 245/242, 100/99, 385/384 and 441/440 in the 11-limit, and  196/195, 352/351 and 676/675 in the 13-limit. It provides the optimal patent val for the 13-limit 41&97 temperament tempering out 100/99, 196/195, 245/242 and 385/384. 97edo is the 25th prime edo.
=== Odd harmonics ===
{{Harmonics in equal|97}}


Since 97edo has a step of 12.371 cents, it also allows one to use its MOS scales as circulating temperaments{{clarify}}. It is the first prime edo which does this and the first edo which allows one to use an MOS scale with a step 20 degrees or larger as a circulating temperament.
== Scales ==
Since 97edo has a step of 12.371 cents, it also allows one to use its [[mos]] scales as [[circulating temperament]]s{{clarify}}. It is the first prime edo which does this and the first edo which allows one to use an mos scale with a step 20 degrees or larger as a circulating temperament.
{| class="wikitable mw-collapsible mw-collapsed collapsible"
{| class="wikitable mw-collapsible mw-collapsed collapsible"
|+Circulating temperaments in 97edo
|+Circulating temperaments in 97edo
Line 247: Line 250:
|}
|}


=== Dissonance ===
== JI approximation ==
97edo has the worst approximation for [[superparticular]] intervals among edos up to 200. It has errors of well above one standard deviation (about 15.87%) in superparticular intervals with denominators up to 14. The first good approximation is the 16/15 semitone using the 9th note, with an error of 3%, meaning 97edo can be used as a rough version of [[16/15ths equal temperament]].
97edo has the worst approximation for [[superparticular]] intervals among edos up to 200. It has errors of well above one standard deviation (about 15.87%) in superparticular intervals with denominators up to 14. The first good approximation is the 16/15 semitone using the 9th note, with an error of 3%, meaning 97edo can be used as a rough version of [[16/15ths equal temperament]].


Line 286: Line 289:
| 17/16 || 48.3   
| 17/16 || 48.3   
|}
|}
[[Category:Equal divisions of the octave|##]]


== Music ==
== Music ==
* [https://www.youtube.com/watch?v=3JwH0gZmXHk Thanatonautical Tetrapharmacon (Demo version, July 2021)] by [[Mercury Amalgam]]


* [https://www.youtube.com/watch?v=3JwH0gZmXHk Thanatonautical Tetrapharmacon (Demo version, July 2021)] by [[Mercury Amalgam]]<!-- 2-digit number -->
[[Category:Prime EDO]]
[[Category:Listen]]
[[Category:Listen]]