72edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>hstraub **Imported revision 263901793 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 264022697 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-12 11:43:18 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>264022697</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 12: | Line 12: | ||
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri. | Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri. | ||
72-tone equal temperament approximates 11-limit [[JustIntonation|just intonation]] exceptionally well, and is the ninth [[ | 72-tone equal temperament approximates 11-limit [[JustIntonation|just intonation]] exceptionally well, and is the ninth [[The Riemann Zeta Function+and Tuning#Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33. | ||
72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic. | 72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic. | ||
Line 51: | Line 51: | ||
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with <a class="wiki_link" href="/96edo">96-edo</a>), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.<br /> | Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with <a class="wiki_link" href="/96edo">96-edo</a>), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.<br /> | ||
<br /> | <br /> | ||
72-tone equal temperament approximates 11-limit <a class="wiki_link" href="/JustIntonation">just intonation</a> exceptionally well, and is the ninth | 72-tone equal temperament approximates 11-limit <a class="wiki_link" href="/JustIntonation">just intonation</a> exceptionally well, and is the ninth [[The Riemann Zeta Function+and Tuning#Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.<br /> | ||
<br /> | <br /> | ||
72 is an excellent tuning for <a class="wiki_link" href="/Gamelismic%20clan">miracle temperament</a>, especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.<br /> | 72 is an excellent tuning for <a class="wiki_link" href="/Gamelismic%20clan">miracle temperament</a>, especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.<br /> |
Revision as of 11:43, 12 October 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-10-12 11:43:18 UTC.
- The original revision id was 264022697.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] ---- 72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music. Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri. 72-tone equal temperament approximates 11-limit [[JustIntonation|just intonation]] exceptionally well, and is the ninth [[The Riemann Zeta Function+and Tuning#Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33. 72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic. =Harmonic Scale= Mode 8 of the harmonic series -- [[overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). || Overtones in "Mode 8": || 8 || || 9 || || 10 || || 11 || || 12 || || 13 || || 14 || || 15 || || 16 || || ...as JI Ratio from 1/1: || 1/1 || || 9/8 || || 5/4 || || 11/8 || || 3/2 || || 13/8 || || 7/4 || || 15/8 || || 2/1 || || ...in cents: || 0 || || 203.9 || || 386.3 || || 551.3 || || 702.0 || || 840.5 || || 968.8 || || 1088.3 || || 1200.0 || || Nearest degree of 72edo: || 0 || || 12 || || 23 || || 33 || || 42 || || 50 || || 58 || || 65 || || 72 || || ...in cents: || 0 || || 200.0 || || 383.3 || || 550.0 || || 700.0 || || 833.3 || || 966.7 || || 1083.3 || || 1200.0 || || Steps as Freq. Ratio: || || 9:8 || || 10:9 || || 11:10 || || 12:11 || || 13:12 || || 14:13 || || 15:14 || || 16:15 || || || ...in cents: || || 203.9 || || 182.4 || || 165.0 || || 150.6 || || 138.6 || || 128.3 || || 119.4 || || 111.7 || || || Nearest degree of 72edo: || || 12 || || 11 || || 10 || || 9 || || 8 || || 8 || || 7 || || 7 || || || ...in cents: || || 200.0 || || 183.3 || || 166.7 || || 150.0 || || 133.3 || || 133.3 || || 116.7 || || 116.7 || || =Z function= 72edo is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. [[image:plot72.png]] =Music= [[http://www.archive.org/details/Kotekant|Kotekant]] [[http://www.archive.org/download/Kotekant/kotekant.mp3|play]] by [[Gene Ward Smith]] =External links= * [[http://en.wikipedia.org/wiki/72_tone_equal_temperament|Wikipedia article on 72edo]] * [[http://en.wikipedia.org/wiki/72_tone_equal_temperament|OrthodoxWiki Article on Byzantine chant, which uses 72edo]] * [[http://en.wikipedia.org/wiki/Joe_Maneri|Wikipedia article on Joe Maneri (1927-2009)]] * [[http://www.ekmelic-music.org/en/index.htmmusik/|Ekmelic Music Society/Gesellschaft für Ekmelische Musik]], a group of composers and researchers dedicated to 72edo music * [[http://sonic-arts.org/tagawa/72edo.htm|Rick Tagawa's 72edo site]], including theory and composers' list * [[http://dannywier.ucoz.com|Danny Wier, composer and musician who specializes in 72-edo]]
Original HTML content:
<html><head><title>72edo</title></head><body><!-- ws:start:WikiTextTocRule:8:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:8 --><!-- ws:start:WikiTextTocRule:9: --><a href="#Harmonic Scale">Harmonic Scale</a><!-- ws:end:WikiTextTocRule:9 --><!-- ws:start:WikiTextTocRule:10: --> | <a href="#Z function">Z function</a><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#External links">External links</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> <!-- ws:end:WikiTextTocRule:13 --><hr /> 72-tone equal temperament (or 72-edo) divides the octave into 72 steps or <em>moria</em>. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of <a class="wiki_link" href="/24edo">24-tone equal temperament</a>, a common and standard tuning of <a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian">Arabic</a> music, and has itself been used to tune Turkish music.<br /> <br /> Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with <a class="wiki_link" href="/96edo">96-edo</a>), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.<br /> <br /> 72-tone equal temperament approximates 11-limit <a class="wiki_link" href="/JustIntonation">just intonation</a> exceptionally well, and is the ninth [[The Riemann Zeta Function+and Tuning#Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.<br /> <br /> 72 is an excellent tuning for <a class="wiki_link" href="/Gamelismic%20clan">miracle temperament</a>, especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Harmonic Scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->Harmonic Scale</h1> Mode 8 of the harmonic series -- <a class="wiki_link" href="/overtone%20scales">overtones 8 through 16</a>, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).<br /> <br /> <table class="wiki_table"> <tr> <td>Overtones in "Mode 8":<br /> </td> <td>8<br /> </td> <td><br /> </td> <td>9<br /> </td> <td><br /> </td> <td>10<br /> </td> <td><br /> </td> <td>11<br /> </td> <td><br /> </td> <td>12<br /> </td> <td><br /> </td> <td>13<br /> </td> <td><br /> </td> <td>14<br /> </td> <td><br /> </td> <td>15<br /> </td> <td><br /> </td> <td>16<br /> </td> </tr> <tr> <td>...as JI Ratio from 1/1:<br /> </td> <td>1/1<br /> </td> <td><br /> </td> <td>9/8<br /> </td> <td><br /> </td> <td>5/4<br /> </td> <td><br /> </td> <td>11/8<br /> </td> <td><br /> </td> <td>3/2<br /> </td> <td><br /> </td> <td>13/8<br /> </td> <td><br /> </td> <td>7/4<br /> </td> <td><br /> </td> <td>15/8<br /> </td> <td><br /> </td> <td>2/1<br /> </td> </tr> <tr> <td>...in cents:<br /> </td> <td>0<br /> </td> <td><br /> </td> <td>203.9<br /> </td> <td><br /> </td> <td>386.3<br /> </td> <td><br /> </td> <td>551.3<br /> </td> <td><br /> </td> <td>702.0<br /> </td> <td><br /> </td> <td>840.5<br /> </td> <td><br /> </td> <td>968.8<br /> </td> <td><br /> </td> <td>1088.3<br /> </td> <td><br /> </td> <td>1200.0<br /> </td> </tr> <tr> <td>Nearest degree of 72edo:<br /> </td> <td>0<br /> </td> <td><br /> </td> <td>12<br /> </td> <td><br /> </td> <td>23<br /> </td> <td><br /> </td> <td>33<br /> </td> <td><br /> </td> <td>42<br /> </td> <td><br /> </td> <td>50<br /> </td> <td><br /> </td> <td>58<br /> </td> <td><br /> </td> <td>65<br /> </td> <td><br /> </td> <td>72<br /> </td> </tr> <tr> <td>...in cents:<br /> </td> <td>0<br /> </td> <td><br /> </td> <td>200.0<br /> </td> <td><br /> </td> <td>383.3<br /> </td> <td><br /> </td> <td>550.0<br /> </td> <td><br /> </td> <td>700.0<br /> </td> <td><br /> </td> <td>833.3<br /> </td> <td><br /> </td> <td>966.7<br /> </td> <td><br /> </td> <td>1083.3<br /> </td> <td><br /> </td> <td>1200.0<br /> </td> </tr> <tr> <td>Steps as Freq. Ratio:<br /> </td> <td><br /> </td> <td>9:8<br /> </td> <td><br /> </td> <td>10:9<br /> </td> <td><br /> </td> <td>11:10<br /> </td> <td><br /> </td> <td>12:11<br /> </td> <td><br /> </td> <td>13:12<br /> </td> <td><br /> </td> <td>14:13<br /> </td> <td><br /> </td> <td>15:14<br /> </td> <td><br /> </td> <td>16:15<br /> </td> <td><br /> </td> </tr> <tr> <td>...in cents:<br /> </td> <td><br /> </td> <td>203.9<br /> </td> <td><br /> </td> <td>182.4<br /> </td> <td><br /> </td> <td>165.0<br /> </td> <td><br /> </td> <td>150.6<br /> </td> <td><br /> </td> <td>138.6<br /> </td> <td><br /> </td> <td>128.3<br /> </td> <td><br /> </td> <td>119.4<br /> </td> <td><br /> </td> <td>111.7<br /> </td> <td><br /> </td> </tr> <tr> <td>Nearest degree of 72edo:<br /> </td> <td><br /> </td> <td>12<br /> </td> <td><br /> </td> <td>11<br /> </td> <td><br /> </td> <td>10<br /> </td> <td><br /> </td> <td>9<br /> </td> <td><br /> </td> <td>8<br /> </td> <td><br /> </td> <td>8<br /> </td> <td><br /> </td> <td>7<br /> </td> <td><br /> </td> <td>7<br /> </td> <td><br /> </td> </tr> <tr> <td>...in cents:<br /> </td> <td><br /> </td> <td>200.0<br /> </td> <td><br /> </td> <td>183.3<br /> </td> <td><br /> </td> <td>166.7<br /> </td> <td><br /> </td> <td>150.0<br /> </td> <td><br /> </td> <td>133.3<br /> </td> <td><br /> </td> <td>133.3<br /> </td> <td><br /> </td> <td>116.7<br /> </td> <td><br /> </td> <td>116.7<br /> </td> <td><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Z function"></a><!-- ws:end:WikiTextHeadingRule:2 -->Z function</h1> 72edo is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a>, as well as being a peak and gap edo, and the maximum value of the <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function">Z function</a> in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.<br /> <br /> <!-- ws:start:WikiTextLocalImageRule:373:<img src="/file/view/plot72.png/219772696/plot72.png" alt="" title="" /> --><img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /><!-- ws:end:WikiTextLocalImageRule:373 --><br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:4 -->Music</h1> <a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow">Kotekant</a> <a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="External links"></a><!-- ws:end:WikiTextHeadingRule:6 -->External links</h1> <ul><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow">Wikipedia article on 72edo</a></li><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow">OrthodoxWiki Article on Byzantine chant, which uses 72edo</a></li><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow">Wikipedia article on Joe Maneri (1927-2009)</a></li><li><a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow">Ekmelic Music Society/Gesellschaft für Ekmelische Musik</a>, a group of composers and researchers dedicated to 72edo music</li><li><a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow">Rick Tagawa's 72edo site</a>, including theory and composers' list</li><li><a class="wiki_link_ext" href="http://dannywier.ucoz.com" rel="nofollow">Danny Wier, composer and musician who specializes in 72-edo</a></li></ul></body></html>