72edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>keenanpepper
**Imported revision 267798768 - Original comment: **
Wikispaces>keenanpepper
**Imported revision 271608782 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-10-24 02:03:56 UTC</tt>.<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-11-03 14:20:40 UTC</tt>.<br>
: The original revision id was <tt>267798768</tt>.<br>
: The original revision id was <tt>271608782</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 28: Line 28:
|| Nearest degree of 72edo: ||  || 12 ||  || 11 ||  || 10 ||  || 9 ||  || 8 ||  || 8 ||  || 7 ||  || 7 ||  ||
|| Nearest degree of 72edo: ||  || 12 ||  || 11 ||  || 10 ||  || 9 ||  || 8 ||  || 8 ||  || 7 ||  || 7 ||  ||
|| ...in cents: ||  || 200.0 ||  || 183.3 ||  || 166.7 ||  || 150.0 ||  || 133.3 ||  || 133.3 ||  || 116.7 ||  || 116.7 ||  ||
|| ...in cents: ||  || 200.0 ||  || 183.3 ||  || 166.7 ||  || 150.0 ||  || 133.3 ||  || 133.3 ||  || 116.7 ||  || 116.7 ||  ||
=Linear temperaments=
||~ Periods per octave ||~ Generator ||~ Names ||
|| 1 || 1\72 || [[quincy]] ||
|| 1 || 5\72 ||  ||
|| 1 || 7\72 || [[miracle]]/benediction/manna ||
|| 1 || 11\72 ||  ||
|| 1 || 13\72 ||  ||
|| 1 || 17\72 || [[neominor]] ||
|| 1 || 19\72 || [[catakleismic]] ||
|| 1 || 23\72 ||  ||
|| 1 || 25\72 || [[sqrtphi]] ||
|| 1 || 29\72 ||  ||
|| 1 || 31\72 || [[marvo]]/zarvo ||
|| 1 || 35\72 || [[cotritone]] ||
|| 2 || 1\72 ||  ||
|| 2 || 5\72 || [[harry]] ||
|| 2 || 7\72 ||  ||
|| 2 || 11\72 || [[unidec]]/hendec ||
|| 2 || 13\72 || [[wizard]]/lizard/gizzard ||
|| 2 || 17\72 ||  ||
|| 3 || 1\72 ||  ||
|| 3 || 5\72 || [[tritikleismic]] ||
|| 3 || 7\72 ||  ||
|| 3 || 11\72 || [[mirkat]] ||
|| 4 || 1\72 || [[quadritikleismic]] ||
|| 4 || 5\72 ||  ||
|| 4 || 7\72 ||  ||
|| 6 || 1\72 ||  ||
|| 6 || 5\72 ||  ||
|| 8 || 1\72 || [[octoid]] ||
|| 8 || 2\72 || [[octowerck]] ||
|| 8 || 4\72 ||  ||
|| 9 || 1\72 ||  ||
|| 9 || 3\72 || [[ennealimmal]]/ennealimmic ||
|| 12 || 1\72 || [[compton]] ||
|| 18 || 1\72 || [[hemiennealimmal]] ||
|| 24 || 1\72 ||  ||
|| 36 || 1\72 ||  ||


=Z function=  
=Z function=  
Line 45: Line 84:
* [[http://dannywier.ucoz.com|Danny Wier, composer and musician who specializes in 72-edo]]</pre></div>
* [[http://dannywier.ucoz.com|Danny Wier, composer and musician who specializes in 72-edo]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;72edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#Harmonic Scale"&gt;Harmonic Scale&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#Z function"&gt;Z function&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;72edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#Harmonic Scale"&gt;Harmonic Scale&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Z function"&gt;Z function&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;
&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;hr /&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;hr /&gt;
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or &lt;em&gt;moria&lt;/em&gt;. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of &lt;a class="wiki_link" href="/24edo"&gt;24-tone equal temperament&lt;/a&gt;, a common and standard tuning of &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;Arabic&lt;/a&gt; music, and has itself been used to tune Turkish music.&lt;br /&gt;
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or &lt;em&gt;moria&lt;/em&gt;. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of &lt;a class="wiki_link" href="/24edo"&gt;24-tone equal temperament&lt;/a&gt;, a common and standard tuning of &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;Arabic&lt;/a&gt; music, and has itself been used to tune Turkish music.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 406: Line 445:


&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Z function"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Z function&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Linear temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Linear temperaments&lt;/h1&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;Periods per octave&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Generator&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Names&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/quincy"&gt;quincy&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/miracle"&gt;miracle&lt;/a&gt;/benediction/manna&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/neominor"&gt;neominor&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/catakleismic"&gt;catakleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/sqrtphi"&gt;sqrtphi&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;29\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;31\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/marvo"&gt;marvo&lt;/a&gt;/zarvo&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/cotritone"&gt;cotritone&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/harry"&gt;harry&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/unidec"&gt;unidec&lt;/a&gt;/hendec&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/wizard"&gt;wizard&lt;/a&gt;/lizard/gizzard&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/tritikleismic"&gt;tritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/mirkat"&gt;mirkat&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/quadritikleismic"&gt;quadritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/octoid"&gt;octoid&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/octowerck"&gt;octowerck&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/ennealimmal"&gt;ennealimmal&lt;/a&gt;/ennealimmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/compton"&gt;compton&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/hemiennealimmal"&gt;hemiennealimmal&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Z function"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Z function&lt;/h1&gt;
  72edo is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt;, as well as being a peak and gap edo, and the maximum value of the &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function"&gt;Z function&lt;/a&gt; in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.&lt;br /&gt;
  72edo is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt;, as well as being a peak and gap edo, and the maximum value of the &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function"&gt;Z function&lt;/a&gt; in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:373:&amp;lt;img src=&amp;quot;/file/view/plot72.png/219772696/plot72.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:373 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:674:&amp;lt;img src=&amp;quot;/file/view/plot72.png/219772696/plot72.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:674 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Music&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Music&lt;/h1&gt;
  &lt;a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow"&gt;Kotekant&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
  &lt;a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow"&gt;Kotekant&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;External links&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;External links&lt;/h1&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow"&gt;Wikipedia article on 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow"&gt;OrthodoxWiki Article on Byzantine chant, which uses 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow"&gt;Wikipedia article on Joe Maneri (1927-2009)&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow"&gt;Ekmelic Music Society/Gesellschaft für Ekmelische Musik&lt;/a&gt;, a group of composers and researchers dedicated to 72edo music&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow"&gt;Rick Tagawa's 72edo site&lt;/a&gt;, including theory and composers' list&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://dannywier.ucoz.com" rel="nofollow"&gt;Danny Wier, composer and musician who specializes in 72-edo&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow"&gt;Wikipedia article on 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow"&gt;OrthodoxWiki Article on Byzantine chant, which uses 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow"&gt;Wikipedia article on Joe Maneri (1927-2009)&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow"&gt;Ekmelic Music Society/Gesellschaft für Ekmelische Musik&lt;/a&gt;, a group of composers and researchers dedicated to 72edo music&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow"&gt;Rick Tagawa's 72edo site&lt;/a&gt;, including theory and composers' list&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://dannywier.ucoz.com" rel="nofollow"&gt;Danny Wier, composer and musician who specializes in 72-edo&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 14:20, 3 November 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author keenanpepper and made on 2011-11-03 14:20:40 UTC.
The original revision id was 271608782.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]
----
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music.

Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.

72-tone equal temperament approximates [[11-limit|11-limit just intonation]] exceptionally well, and is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.

72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.

=Harmonic Scale= 
Mode 8 of the harmonic series -- [[overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).

|| Overtones in "Mode 8": || 8 ||   || 9 ||   || 10 ||   || 11 ||   || 12 ||   || 13 ||   || 14 ||   || 15 ||   || 16 ||
|| ...as JI Ratio from 1/1: || 1/1 ||   || 9/8 ||   || 5/4 ||   || 11/8 ||   || 3/2 ||   || 13/8 ||   || 7/4 ||   || 15/8 ||   || 2/1 ||
|| ...in cents: || 0 ||   || 203.9 ||   || 386.3 ||   || 551.3 ||   || 702.0 ||   || 840.5 ||   || 968.8 ||   || 1088.3 ||   || 1200.0 ||
|| Nearest degree of 72edo: || 0 ||   || 12 ||   || 23 ||   || 33 ||   || 42 ||   || 50 ||   || 58 ||   || 65 ||   || 72 ||
|| ...in cents: || 0 ||   || 200.0 ||   || 383.3 ||   || 550.0 ||   || 700.0 ||   || 833.3 ||   || 966.7 ||   || 1083.3 ||   || 1200.0 ||
|| Steps as Freq. Ratio: ||   || 9:8 ||   || 10:9 ||   || 11:10 ||   || 12:11 ||   || 13:12 ||   || 14:13 ||   || 15:14 ||   || 16:15 ||   ||
|| ...in cents: ||   || 203.9 ||   || 182.4 ||   || 165.0 ||   || 150.6 ||   || 138.6 ||   || 128.3 ||   || 119.4 ||   || 111.7 ||   ||
|| Nearest degree of 72edo: ||   || 12 ||   || 11 ||   || 10 ||   || 9 ||   || 8 ||   || 8 ||   || 7 ||   || 7 ||   ||
|| ...in cents: ||   || 200.0 ||   || 183.3 ||   || 166.7 ||   || 150.0 ||   || 133.3 ||   || 133.3 ||   || 116.7 ||   || 116.7 ||   ||

=Linear temperaments= 
||~ Periods per octave ||~ Generator ||~ Names ||
|| 1 || 1\72 || [[quincy]] ||
|| 1 || 5\72 ||   ||
|| 1 || 7\72 || [[miracle]]/benediction/manna ||
|| 1 || 11\72 ||   ||
|| 1 || 13\72 ||   ||
|| 1 || 17\72 || [[neominor]] ||
|| 1 || 19\72 || [[catakleismic]] ||
|| 1 || 23\72 ||   ||
|| 1 || 25\72 || [[sqrtphi]] ||
|| 1 || 29\72 ||   ||
|| 1 || 31\72 || [[marvo]]/zarvo ||
|| 1 || 35\72 || [[cotritone]] ||
|| 2 || 1\72 ||   ||
|| 2 || 5\72 || [[harry]] ||
|| 2 || 7\72 ||   ||
|| 2 || 11\72 || [[unidec]]/hendec ||
|| 2 || 13\72 || [[wizard]]/lizard/gizzard ||
|| 2 || 17\72 ||   ||
|| 3 || 1\72 ||   ||
|| 3 || 5\72 || [[tritikleismic]] ||
|| 3 || 7\72 ||   ||
|| 3 || 11\72 || [[mirkat]] ||
|| 4 || 1\72 || [[quadritikleismic]] ||
|| 4 || 5\72 ||   ||
|| 4 || 7\72 ||   ||
|| 6 || 1\72 ||   ||
|| 6 || 5\72 ||   ||
|| 8 || 1\72 || [[octoid]] ||
|| 8 || 2\72 || [[octowerck]] ||
|| 8 || 4\72 ||   ||
|| 9 || 1\72 ||   ||
|| 9 || 3\72 || [[ennealimmal]]/ennealimmic ||
|| 12 || 1\72 || [[compton]] ||
|| 18 || 1\72 || [[hemiennealimmal]] ||
|| 24 || 1\72 ||   ||
|| 36 || 1\72 ||   ||

=Z function= 
72edo is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.

[[image:plot72.png]]

=Music= 
[[http://www.archive.org/details/Kotekant|Kotekant]] [[http://www.archive.org/download/Kotekant/kotekant.mp3|play]] by [[Gene Ward Smith]]

=External links= 
* [[http://en.wikipedia.org/wiki/72_tone_equal_temperament|Wikipedia article on 72edo]]
* [[http://orthodoxwiki.org/Byzantine_Chant|OrthodoxWiki Article on Byzantine chant, which uses 72edo]]
* [[http://en.wikipedia.org/wiki/Joe_Maneri|Wikipedia article on Joe Maneri (1927-2009)]]
* [[http://www.ekmelic-music.org/en/index.htmmusik/|Ekmelic Music Society/Gesellschaft für Ekmelische Musik]], a group of composers and researchers dedicated to 72edo music
* [[http://sonic-arts.org/tagawa/72edo.htm|Rick Tagawa's 72edo site]], including theory and composers' list
* [[http://dannywier.ucoz.com|Danny Wier, composer and musician who specializes in 72-edo]]

Original HTML content:

<html><head><title>72edo</title></head><body><!-- ws:start:WikiTextTocRule:10:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --><a href="#Harmonic Scale">Harmonic Scale</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Linear temperaments">Linear temperaments</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#Z function">Z function</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#External links">External links</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: -->
<!-- ws:end:WikiTextTocRule:16 --><hr />
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or <em>moria</em>. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of <a class="wiki_link" href="/24edo">24-tone equal temperament</a>, a common and standard tuning of <a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian">Arabic</a> music, and has itself been used to tune Turkish music.<br />
<br />
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with <a class="wiki_link" href="/96edo">96-edo</a>), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.<br />
<br />
72-tone equal temperament approximates <a class="wiki_link" href="/11-limit">11-limit just intonation</a> exceptionally well, and is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">Zeta integral tuning</a>. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.<br />
<br />
72 is an excellent tuning for <a class="wiki_link" href="/Gamelismic%20clan">miracle temperament</a>, especially the 11-limit version, and the related rank three temperament <a class="wiki_link" href="/Marvel%20family#Prodigy">prodigy</a>, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Harmonic Scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->Harmonic Scale</h1>
 Mode 8 of the harmonic series -- <a class="wiki_link" href="/overtone%20scales">overtones 8 through 16</a>, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).<br />
<br />


<table class="wiki_table">
    <tr>
        <td>Overtones in &quot;Mode 8&quot;:<br />
</td>
        <td>8<br />
</td>
        <td><br />
</td>
        <td>9<br />
</td>
        <td><br />
</td>
        <td>10<br />
</td>
        <td><br />
</td>
        <td>11<br />
</td>
        <td><br />
</td>
        <td>12<br />
</td>
        <td><br />
</td>
        <td>13<br />
</td>
        <td><br />
</td>
        <td>14<br />
</td>
        <td><br />
</td>
        <td>15<br />
</td>
        <td><br />
</td>
        <td>16<br />
</td>
    </tr>
    <tr>
        <td>...as JI Ratio from 1/1:<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td>9/8<br />
</td>
        <td><br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td>11/8<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
        <td>13/8<br />
</td>
        <td><br />
</td>
        <td>7/4<br />
</td>
        <td><br />
</td>
        <td>15/8<br />
</td>
        <td><br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td>0<br />
</td>
        <td><br />
</td>
        <td>203.9<br />
</td>
        <td><br />
</td>
        <td>386.3<br />
</td>
        <td><br />
</td>
        <td>551.3<br />
</td>
        <td><br />
</td>
        <td>702.0<br />
</td>
        <td><br />
</td>
        <td>840.5<br />
</td>
        <td><br />
</td>
        <td>968.8<br />
</td>
        <td><br />
</td>
        <td>1088.3<br />
</td>
        <td><br />
</td>
        <td>1200.0<br />
</td>
    </tr>
    <tr>
        <td>Nearest degree of 72edo:<br />
</td>
        <td>0<br />
</td>
        <td><br />
</td>
        <td>12<br />
</td>
        <td><br />
</td>
        <td>23<br />
</td>
        <td><br />
</td>
        <td>33<br />
</td>
        <td><br />
</td>
        <td>42<br />
</td>
        <td><br />
</td>
        <td>50<br />
</td>
        <td><br />
</td>
        <td>58<br />
</td>
        <td><br />
</td>
        <td>65<br />
</td>
        <td><br />
</td>
        <td>72<br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td>0<br />
</td>
        <td><br />
</td>
        <td>200.0<br />
</td>
        <td><br />
</td>
        <td>383.3<br />
</td>
        <td><br />
</td>
        <td>550.0<br />
</td>
        <td><br />
</td>
        <td>700.0<br />
</td>
        <td><br />
</td>
        <td>833.3<br />
</td>
        <td><br />
</td>
        <td>966.7<br />
</td>
        <td><br />
</td>
        <td>1083.3<br />
</td>
        <td><br />
</td>
        <td>1200.0<br />
</td>
    </tr>
    <tr>
        <td>Steps as Freq. Ratio:<br />
</td>
        <td><br />
</td>
        <td>9:8<br />
</td>
        <td><br />
</td>
        <td>10:9<br />
</td>
        <td><br />
</td>
        <td>11:10<br />
</td>
        <td><br />
</td>
        <td>12:11<br />
</td>
        <td><br />
</td>
        <td>13:12<br />
</td>
        <td><br />
</td>
        <td>14:13<br />
</td>
        <td><br />
</td>
        <td>15:14<br />
</td>
        <td><br />
</td>
        <td>16:15<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td><br />
</td>
        <td>203.9<br />
</td>
        <td><br />
</td>
        <td>182.4<br />
</td>
        <td><br />
</td>
        <td>165.0<br />
</td>
        <td><br />
</td>
        <td>150.6<br />
</td>
        <td><br />
</td>
        <td>138.6<br />
</td>
        <td><br />
</td>
        <td>128.3<br />
</td>
        <td><br />
</td>
        <td>119.4<br />
</td>
        <td><br />
</td>
        <td>111.7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>Nearest degree of 72edo:<br />
</td>
        <td><br />
</td>
        <td>12<br />
</td>
        <td><br />
</td>
        <td>11<br />
</td>
        <td><br />
</td>
        <td>10<br />
</td>
        <td><br />
</td>
        <td>9<br />
</td>
        <td><br />
</td>
        <td>8<br />
</td>
        <td><br />
</td>
        <td>8<br />
</td>
        <td><br />
</td>
        <td>7<br />
</td>
        <td><br />
</td>
        <td>7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td><br />
</td>
        <td>200.0<br />
</td>
        <td><br />
</td>
        <td>183.3<br />
</td>
        <td><br />
</td>
        <td>166.7<br />
</td>
        <td><br />
</td>
        <td>150.0<br />
</td>
        <td><br />
</td>
        <td>133.3<br />
</td>
        <td><br />
</td>
        <td>133.3<br />
</td>
        <td><br />
</td>
        <td>116.7<br />
</td>
        <td><br />
</td>
        <td>116.7<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Linear temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Linear temperaments</h1>
 

<table class="wiki_table">
    <tr>
        <th>Periods per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Names<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/quincy">quincy</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>5\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>7\72<br />
</td>
        <td><a class="wiki_link" href="/miracle">miracle</a>/benediction/manna<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>17\72<br />
</td>
        <td><a class="wiki_link" href="/neominor">neominor</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>19\72<br />
</td>
        <td><a class="wiki_link" href="/catakleismic">catakleismic</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>23\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>25\72<br />
</td>
        <td><a class="wiki_link" href="/sqrtphi">sqrtphi</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>29\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>31\72<br />
</td>
        <td><a class="wiki_link" href="/marvo">marvo</a>/zarvo<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>35\72<br />
</td>
        <td><a class="wiki_link" href="/cotritone">cotritone</a><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>5\72<br />
</td>
        <td><a class="wiki_link" href="/harry">harry</a><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>7\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>11\72<br />
</td>
        <td><a class="wiki_link" href="/unidec">unidec</a>/hendec<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>13\72<br />
</td>
        <td><a class="wiki_link" href="/wizard">wizard</a>/lizard/gizzard<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>17\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>5\72<br />
</td>
        <td><a class="wiki_link" href="/tritikleismic">tritikleismic</a><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>7\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>11\72<br />
</td>
        <td><a class="wiki_link" href="/mirkat">mirkat</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/quadritikleismic">quadritikleismic</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>5\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>7\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>5\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/octoid">octoid</a><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>2\72<br />
</td>
        <td><a class="wiki_link" href="/octowerck">octowerck</a><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>4\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>3\72<br />
</td>
        <td><a class="wiki_link" href="/ennealimmal">ennealimmal</a>/ennealimmic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/compton">compton</a><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/hemiennealimmal">hemiennealimmal</a><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Z function"></a><!-- ws:end:WikiTextHeadingRule:4 -->Z function</h1>
 72edo is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a>, as well as being a peak and gap edo, and the maximum value of the <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function">Z function</a> in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.<br />
<br />
<!-- ws:start:WikiTextLocalImageRule:674:&lt;img src=&quot;/file/view/plot72.png/219772696/plot72.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /><!-- ws:end:WikiTextLocalImageRule:674 --><br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:6 -->Music</h1>
 <a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow">Kotekant</a> <a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="External links"></a><!-- ws:end:WikiTextHeadingRule:8 -->External links</h1>
 <ul><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow">Wikipedia article on 72edo</a></li><li><a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow">OrthodoxWiki Article on Byzantine chant, which uses 72edo</a></li><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow">Wikipedia article on Joe Maneri (1927-2009)</a></li><li><a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow">Ekmelic Music Society/Gesellschaft für Ekmelische Musik</a>, a group of composers and researchers dedicated to 72edo music</li><li><a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow">Rick Tagawa's 72edo site</a>, including theory and composers' list</li><li><a class="wiki_link_ext" href="http://dannywier.ucoz.com" rel="nofollow">Danny Wier, composer and musician who specializes in 72-edo</a></li></ul></body></html>