65edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 189186325 - Original comment: **
Wikispaces>Osmiorisbendi
**Imported revision 211600464 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-12-19 09:58:17 UTC</tt>.<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-03-17 19:58:04 UTC</tt>.<br>
: The original revision id was <tt>189186325</tt>.<br>
: The original revision id was <tt>211600464</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//65edo// divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is &lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #750063; font-size: 103%;"&gt;65 tone equal temperament&lt;/span&gt;=
//65edo// divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is &lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.
 
==Intervals==
|| Degrees of 65-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 18,4615 ||
|| 2 || 36,9231 ||
|| 3 || 55,3846 ||
|| 4 || 73,8462 ||
|| 5 || 92,3077 ||
|| 6 || 110,7692 ||
|| 7 || 129,2308 ||
|| 8 || 147,6923 ||
|| 9 || 166,1538 ||
|| 10 || 184,6154 ||
|| 11 || 203,0769 ||
|| 12 || 221,5385 ||
|| 13 || 240 ||
|| 14 || 258,4615 ||
|| 15 || 276,9231 ||
|| 16 || 295,3846 ||
|| 17 || 313,8462 ||
|| 18 || 332,3077 ||
|| 19 || 350,7692 ||
|| 20 || 369,2308 ||
|| 21 || 387,6923 ||
|| 22 || 406,1538 ||
|| 23 || 424,6154 ||
|| 24 || 443,0769 ||
|| 25 || 461,5385 ||
|| 26 || 480 ||
|| 27 || 498,4615 ||
|| 28 || 516,9231 ||
|| 29 || 535,3846 ||
|| 30 || 553,8462 ||
|| 31 || 572,3077 ||
|| 32 || 590,7692 ||
|| 33 || 609,2308 ||
|| 34 || 627,6923 ||
|| 35 || 646,1538 ||
|| 36 || 664,6154 ||
|| 37 || 683,0769 ||
|| 38 || 701,5385 ||
|| 39 || 720 ||
|| 40 || 738,4615 ||
|| 41 || 756,9231 ||
|| 42 || 775,3846 ||
|| 43 || 793,8462 ||
|| 44 || 812,3077 ||
|| 45 || 830,7692 ||
|| 46 || 849,2308 ||
|| 47 || 867,6923 ||
|| 48 || 886,1538 ||
|| 49 || 904,6154 ||
|| 50 || 923,0769 ||
|| 51 || 941,5385 ||
|| 52 || 960 ||
|| 53 || 978,4615 ||
|| 54 || 996,9231 ||
|| 55 || 1015,3846 ||
|| 56 || 1033,8462 ||
|| 57 || 1052,3077 ||
|| 58 || 1070,7692 ||
|| 59 || 1089,2308 ||
|| 60 || 1107,6923 ||
|| 61 || 1126,1538 ||
|| 62 || 1144,6154 ||
|| 63 || 1163,0769 ||
|| 64 || 1181,5385 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;65edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;65edo&lt;/em&gt; divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is &amp;lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &amp;lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.&lt;/body&gt;&lt;/html&gt;</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;65edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x65 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #750063; font-size: 103%;"&gt;65 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;em&gt;65edo&lt;/em&gt; divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is &amp;lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &amp;lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x65 tone equal temperament-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Degrees of 65-EDO&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents value&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18,4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;36,9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;55,3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;73,8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;92,3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;110,7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;129,2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;147,6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166,1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;184,6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203,0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;221,5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;258,4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;276,9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;295,3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;313,8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;332,3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;350,7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;369,2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;387,6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;406,1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;424,6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;443,0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;461,5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;498,4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;516,9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;535,3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;553,8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;572,3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;590,7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;609,2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;627,6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;646,1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;664,6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;683,0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;701,5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;738,4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;756,9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;775,3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;793,8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;812,3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;830,7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;849,2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;867,6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;886,1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;904,6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;923,0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;941,5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;960&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;978,4615&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;996,9231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1015,3846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1033,8462&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1052,3077&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1070,7692&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1089,2308&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1107,6923&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1126,1538&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1144,6154&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1163,0769&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1181,5385&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 19:58, 17 March 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2011-03-17 19:58:04 UTC.
The original revision id was 211600464.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #750063; font-size: 103%;">65 tone equal temperament</span>= 
//65edo// divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.

==Intervals== 
|| Degrees of 65-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 18,4615 ||
|| 2 || 36,9231 ||
|| 3 || 55,3846 ||
|| 4 || 73,8462 ||
|| 5 || 92,3077 ||
|| 6 || 110,7692 ||
|| 7 || 129,2308 ||
|| 8 || 147,6923 ||
|| 9 || 166,1538 ||
|| 10 || 184,6154 ||
|| 11 || 203,0769 ||
|| 12 || 221,5385 ||
|| 13 || 240 ||
|| 14 || 258,4615 ||
|| 15 || 276,9231 ||
|| 16 || 295,3846 ||
|| 17 || 313,8462 ||
|| 18 || 332,3077 ||
|| 19 || 350,7692 ||
|| 20 || 369,2308 ||
|| 21 || 387,6923 ||
|| 22 || 406,1538 ||
|| 23 || 424,6154 ||
|| 24 || 443,0769 ||
|| 25 || 461,5385 ||
|| 26 || 480 ||
|| 27 || 498,4615 ||
|| 28 || 516,9231 ||
|| 29 || 535,3846 ||
|| 30 || 553,8462 ||
|| 31 || 572,3077 ||
|| 32 || 590,7692 ||
|| 33 || 609,2308 ||
|| 34 || 627,6923 ||
|| 35 || 646,1538 ||
|| 36 || 664,6154 ||
|| 37 || 683,0769 ||
|| 38 || 701,5385 ||
|| 39 || 720 ||
|| 40 || 738,4615 ||
|| 41 || 756,9231 ||
|| 42 || 775,3846 ||
|| 43 || 793,8462 ||
|| 44 || 812,3077 ||
|| 45 || 830,7692 ||
|| 46 || 849,2308 ||
|| 47 || 867,6923 ||
|| 48 || 886,1538 ||
|| 49 || 904,6154 ||
|| 50 || 923,0769 ||
|| 51 || 941,5385 ||
|| 52 || 960 ||
|| 53 || 978,4615 ||
|| 54 || 996,9231 ||
|| 55 || 1015,3846 ||
|| 56 || 1033,8462 ||
|| 57 || 1052,3077 ||
|| 58 || 1070,7692 ||
|| 59 || 1089,2308 ||
|| 60 || 1107,6923 ||
|| 61 || 1126,1538 ||
|| 62 || 1144,6154 ||
|| 63 || 1163,0769 ||
|| 64 || 1181,5385 ||

Original HTML content:

<html><head><title>65edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x65 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #750063; font-size: 103%;">65 tone equal temperament</span></h1>
 <em>65edo</em> divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is &lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x65 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>Degrees of 65-EDO<br />
</td>
        <td>Cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>18,4615<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>36,9231<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>55,3846<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>73,8462<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>92,3077<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>110,7692<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>129,2308<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>147,6923<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>166,1538<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>184,6154<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>203,0769<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>221,5385<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>240<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>258,4615<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>276,9231<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>295,3846<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>313,8462<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>332,3077<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>350,7692<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>369,2308<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>387,6923<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>406,1538<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>424,6154<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>443,0769<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>461,5385<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>480<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>498,4615<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>516,9231<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>535,3846<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>553,8462<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>572,3077<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>590,7692<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>609,2308<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>627,6923<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>646,1538<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>664,6154<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>683,0769<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>701,5385<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>720<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>738,4615<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>756,9231<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>775,3846<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>793,8462<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>812,3077<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>830,7692<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>849,2308<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>867,6923<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>886,1538<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>904,6154<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>923,0769<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>941,5385<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>960<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>978,4615<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>996,9231<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>1015,3846<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>1033,8462<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>1052,3077<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>1070,7692<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>1089,2308<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>1107,6923<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>1126,1538<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>1144,6154<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>1163,0769<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>1181,5385<br />
</td>
    </tr>
</table>

</body></html>