5L 8s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 563019239 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a "third". However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the "minor third/major sixth") are typically the most consonant harmonies of the scale.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-10-19 16:13:34 UTC</tt>.<br>
: The original revision id was <tt>563019239</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a "third". However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the "minor third/major sixth") are typically the most consonant harmonies of the scale.
|| (2+3)/13 ||  ||  || 184.615+&lt;span style="font-size: 12.8000001907349px;"&gt;276.923&lt;/span&gt; ||
|| (9+13)/57 ||  ||  || 189.474+273.684 ||
|| (7+10)/44 ||  ||  || 190.909+272.727 ||
||  || (19+27)/119 ||  || 191.597+272.269 ||
||  || (12+17)/75 ||  || 192+272 ||
||  || (17+24)/106 ||  || 192.472+271.698 ||
|| (5+7)/31 ||  ||  || 193.548+270.968 ||
||  || (18+25)/111 ||  || 194.595+270.27 ||
||  || (13+18)/80 ||  || 195+270 ||
||  ||  ||  || 195.252+269.832 ||
||  ||  || (21+29)/129 || 195.349+269.907 ||
||  || (8+11)/49 ||  || 195.918+269.388 ||
||  ||  || (19+26)/116 || 196.552+268.966 ||
||  || (11+15)/67 ||  || 197.015+268.657 ||
||  || (14+19)/85 ||  || 197.647+268.235 ||
||  || (17+23)/103 ||  || 198.058+267.961 ||
||  || (20+27)/121 ||  || 198.347+267.769 ||
||  || (23+31)/139 ||  || 198.561+267.626 ||
||  || (26+35)/157 ||  || 198.726+267.516 ||
||  || (29+39)/175 ||  || 198.857+267.429 ||
||  || (32+43)/193 ||  || 198.964+267.358 ||
||  || (35+47)/211 ||  || 199.052+267.299 ||
|| (3+4)/18 ||  ||  || 200+266.667 ||
||  || (19+25)/113 ||  || 201.77+265.442 ||
||  || (16+21)/95 ||  || 202.105+265.2105 ||
||  || (13+17)/77 ||  || 202.597+264.935 ||
||  || (10+13)/59 ||  || 203.39+264.407 ||
||  || (7+9)/41 ||  || 204.878+263.415 ||
||  ||  || (18+23)/105 || 205.714+262.857 ||
||  ||  ||  || 205.861+262.759 ||
||  || (11+14)/64 ||  || 206.25+262.5 ||
||  ||  ||  || 206.653+262.231 ||
||  || (15+19)/87 ||  || 206.897+262.069 ||
||  || (19+24)/110 ||  || 207.273+261.818 ||
|| (4+5)/23 ||  ||  || 208.696+260.870 ||
||  ||  ||  || 209.6305+260.246 ||
||  || (13+16)/74 ||  || 210.811+259.459 ||
||  || (9+11)/51 ||  || 211.765+257.824 ||
||  || (14+17)/79 ||  || 212.658+258.346 ||
|| (5+6)/28 ||  ||  || 214.286+257.143 ||
||  || (16+19)/89 ||  || 215.73+256.18 ||
||  || &lt;span style="font-size: 12.8000001907349px;"&gt;(11+13)/61&lt;/span&gt; ||  || 216.393+255.738 ||
||  || (17+20)/94 ||  || 217.021+255.319 ||
|| (6+7)/33 ||  ||  || 218.182+254.5455 ||
|| (1+1)/5 ||  ||  || 240+240 ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;5L 8s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a &amp;quot;third&amp;quot;. However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the &amp;quot;minor third/major sixth&amp;quot;) are typically the most consonant harmonies of the scale.&lt;br /&gt;


 
{| class="wikitable"
&lt;table class="wiki_table"&gt;
|-
    &lt;tr&gt;
| | (2+3)/13
        &lt;td&gt;(2+3)/13&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 184.615+<span style="font-size: 12.8000001907349px;">276.923</span>
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| | (9+13)/57
&lt;/td&gt;
| |
        &lt;td&gt;184.615+&lt;span style="font-size: 12.8000001907349px;"&gt;276.923&lt;/span&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 189.474+273.684
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| | (7+10)/44
        &lt;td&gt;(9+13)/57&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 190.909+272.727
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (19+27)/119
        &lt;td&gt;189.474+273.684&lt;br /&gt;
| |
&lt;/td&gt;
| | 191.597+272.269
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;(7+10)/44&lt;br /&gt;
| | (12+17)/75
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 192+272
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (17+24)/106
        &lt;td&gt;190.909+272.727&lt;br /&gt;
| |
&lt;/td&gt;
| | 192.472+271.698
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| | (5+7)/31
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;(19+27)/119&lt;br /&gt;
| | 193.548+270.968
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (18+25)/111
        &lt;td&gt;191.597+272.269&lt;br /&gt;
| |
&lt;/td&gt;
| | 194.595+270.27
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (13+18)/80
&lt;/td&gt;
| |
        &lt;td&gt;(12+17)/75&lt;br /&gt;
| | 195+270
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;192+272&lt;br /&gt;
| |
&lt;/td&gt;
| | 195.252+269.832
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (21+29)/129
        &lt;td&gt;(17+24)/106&lt;br /&gt;
| | 195.349+269.907
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (8+11)/49
        &lt;td&gt;192.472+271.698&lt;br /&gt;
| |
&lt;/td&gt;
| | 195.918+269.388
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;(5+7)/31&lt;br /&gt;
| |
&lt;/td&gt;
| | (19+26)/116
        &lt;td&gt;&lt;br /&gt;
| | 196.552+268.966
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (11+15)/67
        &lt;td&gt;193.548+270.968&lt;br /&gt;
| |
&lt;/td&gt;
| | 197.015+268.657
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (14+19)/85
&lt;/td&gt;
| |
        &lt;td&gt;(18+25)/111&lt;br /&gt;
| | 197.647+268.235
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (17+23)/103
        &lt;td&gt;194.595+270.27&lt;br /&gt;
| |
&lt;/td&gt;
| | 198.058+267.961
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (20+27)/121
&lt;/td&gt;
| |
        &lt;td&gt;(13+18)/80&lt;br /&gt;
| | 198.347+267.769
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (23+31)/139
        &lt;td&gt;195+270&lt;br /&gt;
| |
&lt;/td&gt;
| | 198.561+267.626
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (26+35)/157
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 198.726+267.516
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (29+39)/175
        &lt;td&gt;195.252+269.832&lt;br /&gt;
| |
&lt;/td&gt;
| | 198.857+267.429
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (32+43)/193
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 198.964+267.358
&lt;/td&gt;
|-
        &lt;td&gt;(21+29)/129&lt;br /&gt;
| |
&lt;/td&gt;
| | (35+47)/211
        &lt;td&gt;195.349+269.907&lt;br /&gt;
| |
&lt;/td&gt;
| | 199.052+267.299
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| | (3+4)/18
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;(8+11)/49&lt;br /&gt;
| | 200+266.667
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (19+25)/113
        &lt;td&gt;195.918+269.388&lt;br /&gt;
| |
&lt;/td&gt;
| | 201.77+265.442
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (16+21)/95
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 202.105+265.2105
&lt;/td&gt;
|-
        &lt;td&gt;(19+26)/116&lt;br /&gt;
| |
&lt;/td&gt;
| | (13+17)/77
        &lt;td&gt;196.552+268.966&lt;br /&gt;
| |
&lt;/td&gt;
| | 202.597+264.935
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (10+13)/59
&lt;/td&gt;
| |
        &lt;td&gt;(11+15)/67&lt;br /&gt;
| | 203.39+264.407
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (7+9)/41
        &lt;td&gt;197.015+268.657&lt;br /&gt;
| |
&lt;/td&gt;
| | 204.878+263.415
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (18+23)/105
        &lt;td&gt;(14+19)/85&lt;br /&gt;
| | 205.714+262.857
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;197.647+268.235&lt;br /&gt;
| |
&lt;/td&gt;
| | 205.861+262.759
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (11+14)/64
&lt;/td&gt;
| |
        &lt;td&gt;(17+23)/103&lt;br /&gt;
| | 206.25+262.5
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;198.058+267.961&lt;br /&gt;
| |
&lt;/td&gt;
| | 206.653+262.231
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (15+19)/87
&lt;/td&gt;
| |
        &lt;td&gt;(20+27)/121&lt;br /&gt;
| | 206.897+262.069
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (19+24)/110
        &lt;td&gt;198.347+267.769&lt;br /&gt;
| |
&lt;/td&gt;
| | 207.273+261.818
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| | (4+5)/23
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;(23+31)/139&lt;br /&gt;
| | 208.696+260.870
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;198.561+267.626&lt;br /&gt;
| |
&lt;/td&gt;
| | 209.6305+260.246
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (13+16)/74
&lt;/td&gt;
| |
        &lt;td&gt;(26+35)/157&lt;br /&gt;
| | 210.811+259.459
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | (9+11)/51
        &lt;td&gt;198.726+267.516&lt;br /&gt;
| |
&lt;/td&gt;
| | 211.765+257.824
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (14+17)/79
&lt;/td&gt;
| |
        &lt;td&gt;(29+39)/175&lt;br /&gt;
| | 212.658+258.346
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| | (5+6)/28
&lt;/td&gt;
| |
        &lt;td&gt;198.857+267.429&lt;br /&gt;
| |
&lt;/td&gt;
| | 214.286+257.143
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (16+19)/89
&lt;/td&gt;
| |
        &lt;td&gt;(32+43)/193&lt;br /&gt;
| | 215.73+256.18
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | <span style="font-size: 12.8000001907349px;">(11+13)/61</span>
        &lt;td&gt;198.964+267.358&lt;br /&gt;
| |
&lt;/td&gt;
| | 216.393+255.738
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | (17+20)/94
&lt;/td&gt;
| |
        &lt;td&gt;(35+47)/211&lt;br /&gt;
| | 217.021+255.319
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| | (6+7)/33
&lt;/td&gt;
| |
        &lt;td&gt;199.052+267.299&lt;br /&gt;
| |
&lt;/td&gt;
| | 218.182+254.5455
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| | (1+1)/5
        &lt;td&gt;(3+4)/18&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 240+240
&lt;/td&gt;
|}
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200+266.667&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(19+25)/113&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;201.77+265.442&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(16+21)/95&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;202.105+265.2105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(13+17)/77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;202.597+264.935&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(10+13)/59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203.39+264.407&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(7+9)/41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;204.878+263.415&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(18+23)/105&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205.714+262.857&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205.861+262.759&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(11+14)/64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206.25+262.5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206.653+262.231&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(15+19)/87&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206.897+262.069&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(19+24)/110&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;207.273+261.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(4+5)/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;208.696+260.870&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;209.6305+260.246&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(13+16)/74&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210.811+259.459&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(9+11)/51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211.765+257.824&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(14+17)/79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212.658+258.346&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(5+6)/28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;214.286+257.143&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(16+19)/89&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;215.73+256.18&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="font-size: 12.8000001907349px;"&gt;(11+13)/61&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216.393+255.738&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(17+20)/94&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;217.021+255.319&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(6+7)/33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218.182+254.5455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(1+1)/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240+240&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a "third". However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the "minor third/major sixth") are typically the most consonant harmonies of the scale.

(2+3)/13 184.615+276.923
(9+13)/57 189.474+273.684
(7+10)/44 190.909+272.727
(19+27)/119 191.597+272.269
(12+17)/75 192+272
(17+24)/106 192.472+271.698
(5+7)/31 193.548+270.968
(18+25)/111 194.595+270.27
(13+18)/80 195+270
195.252+269.832
(21+29)/129 195.349+269.907
(8+11)/49 195.918+269.388
(19+26)/116 196.552+268.966
(11+15)/67 197.015+268.657
(14+19)/85 197.647+268.235
(17+23)/103 198.058+267.961
(20+27)/121 198.347+267.769
(23+31)/139 198.561+267.626
(26+35)/157 198.726+267.516
(29+39)/175 198.857+267.429
(32+43)/193 198.964+267.358
(35+47)/211 199.052+267.299
(3+4)/18 200+266.667
(19+25)/113 201.77+265.442
(16+21)/95 202.105+265.2105
(13+17)/77 202.597+264.935
(10+13)/59 203.39+264.407
(7+9)/41 204.878+263.415
(18+23)/105 205.714+262.857
205.861+262.759
(11+14)/64 206.25+262.5
206.653+262.231
(15+19)/87 206.897+262.069
(19+24)/110 207.273+261.818
(4+5)/23 208.696+260.870
209.6305+260.246
(13+16)/74 210.811+259.459
(9+11)/51 211.765+257.824
(14+17)/79 212.658+258.346
(5+6)/28 214.286+257.143
(16+19)/89 215.73+256.18
(11+13)/61 216.393+255.738
(17+20)/94 217.021+255.319
(6+7)/33 218.182+254.5455
(1+1)/5 240+240