5L 3s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Andrew_Heathwaite
**Imported revision 160517351 - Original comment: **
 
Wikispaces>Andrew_Heathwaite
**Imported revision 160518485 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2010-09-05 18:22:28 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2010-09-05 18:32:27 UTC</tt>.<br>
: The original revision id was <tt>160517351</tt>.<br>
: The original revision id was <tt>160518485</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of [[5edo]] = approx. 480¢) to 3\8 (three degrees of [[8edo]] = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of [[5edo]] = approx. 480¢) to 3\8 (three degrees of [[8edo]] = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:


||  ||  ||  ||  || scale || g || 2g ||
||  ||  ||  ||  || scale || g in cents || 2g ||
|| 2\5 ||  ||  ||  || 1 0 1 1 0 1 0 1 ||   ||   ||
|| 2\5 ||  ||  ||  || 1 0 1 1 0 1 0 1 || 480.000 || 960.000 ||
||  ||  ||  || 9\23 || 4 1 4 4 1 4 1 4 ||   ||   ||
||  ||  ||  || 9\23 || 4 1 4 4 1 4 1 4 || 469.565 || 939.130 ||
||  ||  || 7\18 ||  || 3 1 3 3 1 3 1 3 ||   ||   ||
||  ||  || 7\18 ||  || 3 1 3 3 1 3 1 3 || 466.667 || 933.333 ||
||  ||  ||  || 12\31 || 5 2 5 5 2 5 2 5 ||   ||   ||
||  ||  ||  || 12\31 || 5 2 5 5 2 5 2 5 || 464.516 || 929.032 ||
||  || 5\13 ||  ||  || 2 1 2 2 1 2 1 2 ||   ||   ||
||  || 5\13 ||  ||  || 2 1 2 2 1 2 1 2 || 461.538 || 923.077 ||
||  ||  ||  || 13\34 || 5 3 5 5 3 5 3 5 ||   ||   ||
||  ||  ||  || 13\34 || 5 3 5 5 3 5 3 5 || 458.824 || 917.647 ||
||  ||  || 8\21 ||  || 3 2 3 3 2 3 2 3 ||   ||   ||
||  ||  || 8\21 ||  || 3 2 3 3 2 3 2 3 || 457.143 || 914.286 ||
||  ||  ||  || 11\29 || 4 3 4 4 3 4 3 4 ||   ||   ||
||  ||  ||  || 11\29 || 4 3 4 4 3 4 3 4 || 455.172 || 910.345 ||
|| 3\8 ||  ||  ||  || 1 1 1 1 1 1 1 1 ||   ||   ||</pre></div>
|| 3\8 ||  ||  ||  || 1 1 1 1 1 1 1 1 || 450.000 || 900.000 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;5L 3s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of &lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt; = approx. 480¢) to 3\8 (three degrees of &lt;a class="wiki_link" href="/8edo"&gt;8edo&lt;/a&gt; = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;5L 3s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of &lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt; = approx. 480¢) to 3\8 (three degrees of &lt;a class="wiki_link" href="/8edo"&gt;8edo&lt;/a&gt; = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:&lt;br /&gt;
Line 35: Line 35:
         &lt;td&gt;scale&lt;br /&gt;
         &lt;td&gt;scale&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;g&lt;br /&gt;
         &lt;td&gt;g in cents&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2g&lt;br /&gt;
         &lt;td&gt;2g&lt;br /&gt;
Line 51: Line 51:
         &lt;td&gt;1 0 1 1 0 1 0 1&lt;br /&gt;
         &lt;td&gt;1 0 1 1 0 1 0 1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;480.000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;960.000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 67: Line 67:
         &lt;td&gt;4 1 4 4 1 4 1 4&lt;br /&gt;
         &lt;td&gt;4 1 4 4 1 4 1 4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;469.565&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;939.130&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 83: Line 83:
         &lt;td&gt;3 1 3 3 1 3 1 3&lt;br /&gt;
         &lt;td&gt;3 1 3 3 1 3 1 3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;466.667&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;933.333&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 99: Line 99:
         &lt;td&gt;5 2 5 5 2 5 2 5&lt;br /&gt;
         &lt;td&gt;5 2 5 5 2 5 2 5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;464.516&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;929.032&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 115: Line 115:
         &lt;td&gt;2 1 2 2 1 2 1 2&lt;br /&gt;
         &lt;td&gt;2 1 2 2 1 2 1 2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;461.538&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;923.077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 131: Line 131:
         &lt;td&gt;5 3 5 5 3 5 3 5&lt;br /&gt;
         &lt;td&gt;5 3 5 5 3 5 3 5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;458.824&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;917.647&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 147: Line 147:
         &lt;td&gt;3 2 3 3 2 3 2 3&lt;br /&gt;
         &lt;td&gt;3 2 3 3 2 3 2 3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;457.143&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;914.286&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 163: Line 163:
         &lt;td&gt;4 3 4 4 3 4 3 4&lt;br /&gt;
         &lt;td&gt;4 3 4 4 3 4 3 4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;455.172&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;910.345&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 179: Line 179:
         &lt;td&gt;1 1 1 1 1 1 1 1&lt;br /&gt;
         &lt;td&gt;1 1 1 1 1 1 1 1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;450.000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;900.000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;

Revision as of 18:32, 5 September 2010

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2010-09-05 18:32:27 UTC.
The original revision id was 160518485.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of [[5edo]] = approx. 480¢) to 3\8 (three degrees of [[8edo]] = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:

||   ||   ||   ||   || scale || g in cents || 2g ||
|| 2\5 ||   ||   ||   || 1 0 1 1 0 1 0 1 || 480.000 || 960.000 ||
||   ||   ||   || 9\23 || 4 1 4 4 1 4 1 4 || 469.565 || 939.130 ||
||   ||   || 7\18 ||   || 3 1 3 3 1 3 1 3 || 466.667 || 933.333 ||
||   ||   ||   || 12\31 || 5 2 5 5 2 5 2 5 || 464.516 || 929.032 ||
||   || 5\13 ||   ||   || 2 1 2 2 1 2 1 2 || 461.538 || 923.077 ||
||   ||   ||   || 13\34 || 5 3 5 5 3 5 3 5 || 458.824 || 917.647 ||
||   ||   || 8\21 ||   || 3 2 3 3 2 3 2 3 || 457.143 || 914.286 ||
||   ||   ||   || 11\29 || 4 3 4 4 3 4 3 4 || 455.172 || 910.345 ||
|| 3\8 ||   ||   ||   || 1 1 1 1 1 1 1 1 || 450.000 || 900.000 ||

Original HTML content:

<html><head><title>5L 3s</title></head><body>5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of <a class="wiki_link" href="/5edo">5edo</a> = approx. 480¢) to 3\8 (three degrees of <a class="wiki_link" href="/8edo">8edo</a> = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:<br />
<br />


<table class="wiki_table">
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>scale<br />
</td>
        <td>g in cents<br />
</td>
        <td>2g<br />
</td>
    </tr>
    <tr>
        <td>2\5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1 0 1 1 0 1 0 1<br />
</td>
        <td>480.000<br />
</td>
        <td>960.000<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9\23<br />
</td>
        <td>4 1 4 4 1 4 1 4<br />
</td>
        <td>469.565<br />
</td>
        <td>939.130<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>7\18<br />
</td>
        <td><br />
</td>
        <td>3 1 3 3 1 3 1 3<br />
</td>
        <td>466.667<br />
</td>
        <td>933.333<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>12\31<br />
</td>
        <td>5 2 5 5 2 5 2 5<br />
</td>
        <td>464.516<br />
</td>
        <td>929.032<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>5\13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2 1 2 2 1 2 1 2<br />
</td>
        <td>461.538<br />
</td>
        <td>923.077<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13\34<br />
</td>
        <td>5 3 5 5 3 5 3 5<br />
</td>
        <td>458.824<br />
</td>
        <td>917.647<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>8\21<br />
</td>
        <td><br />
</td>
        <td>3 2 3 3 2 3 2 3<br />
</td>
        <td>457.143<br />
</td>
        <td>914.286<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>11\29<br />
</td>
        <td>4 3 4 4 3 4 3 4<br />
</td>
        <td>455.172<br />
</td>
        <td>910.345<br />
</td>
    </tr>
    <tr>
        <td>3\8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1 1 1 1 1 1 1 1<br />
</td>
        <td>450.000<br />
</td>
        <td>900.000<br />
</td>
    </tr>
</table>

</body></html>