5L 3s: Difference between revisions
Wikispaces>xenwolf **Imported revision 602894250 - Original comment: removed tel links** |
Wikispaces>FREEZE No edit summary |
||
Line 1: | Line 1: | ||
5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of [[5edo|5edo]] = 480¢) to 3\8 (three degrees of [[8edo|8edo]] = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this: | |||
{| class="wikitable" | |||
|- | |||
! colspan="5" | generator | |||
! | <span style="display: block; text-align: center;">tetrachord</span> | |||
! | <span style="display: block; text-align: center;">g in cents</span> | |||
! | <span style="display: block; text-align: center;">2g</span> | |||
! | <span style="display: block; text-align: center;">3g</span> | |||
! | <span style="display: block; text-align: center;">4g</span> | |||
! | <span style="display: block; text-align: center;">Comments</span> | |||
|- | |||
| | 2\5 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">1 0 1</span> | |||
| style="text-align:center;" | 480.000 | |||
| style="text-align:center;" | 960.000 | |||
| style="text-align:center;" | 240.00 | |||
| style="text-align:center;" | <span style="line-height: 15.6000003814697px;">720.000</span> | |||
| style="text-align:center;" | | |||
|- | |||
| | 21\53 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">10 1 10</span> | |||
| style="text-align:center;" | 475.472 | |||
| style="text-align:center;" | 950.943 | |||
| style="text-align:center;" | 226.415 | |||
| style="text-align:center;" | 701.887 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">Vulture/Buzzard is around here</span> | |||
|- | |||
| | 19\48 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">9 1 9</span> | |||
| style="text-align:center;" | 475 | |||
| style="text-align:center;" | 950 | |||
| style="text-align:center;" | 225 | |||
| style="text-align:center;" | 700 | |||
| style="text-align:center;" | | |||
|- | |||
| | 17\43 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">8 1 8</span> | |||
| style="text-align:center;" | 474.419 | |||
| style="text-align:center;" | 948.837 | |||
| style="text-align:center;" | 223.256 | |||
| style="text-align:center;" | 697.674 | |||
| style="text-align:center;" | | |||
|- | |||
| | 15\38 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">7 1 7</span> | |||
| style="text-align:center;" | 473.684 | |||
| style="text-align:center;" | 947.368 | |||
| style="text-align:center;" | 221.053 | |||
| style="text-align:center;" | 694.737 | |||
| style="text-align:center;" | | |||
|- | |||
| | 13\33 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">6 1 6</span> | |||
| style="text-align:center;" | 472.727 | |||
| style="text-align:center;" | 945.455 | |||
| style="text-align:center;" | 218.181 | |||
| style="text-align:center;" | 690.909 | |||
| style="text-align:center;" | | |||
|- | |||
| | 11\28 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">5 1 5</span> | |||
| style="text-align:center;" | 471.429 | |||
| style="text-align:center;" | 942.857 | |||
| style="text-align:center;" | 214.286 | |||
| style="text-align:center;" | 685.714 | |||
| style="text-align:center;" | | |||
|- | |||
| | 9\23 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">4 1 4</span> | |||
| style="text-align:center;" | 469.565 | |||
| style="text-align:center;" | 939.130 | |||
| style="text-align:center;" | 208.696 | |||
| style="text-align:center;" | 678.261 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = 4</span> | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | pi 1 pi | |||
| style="text-align:center;" | 467.171 | |||
| style="text-align:center;" | 934.3425 | |||
| style="text-align:center;" | 201.514 | |||
| style="text-align:center;" | 668.685 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = pi</span> | |||
|- | |||
| | 7\18 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">3 1 3</span> | |||
| style="text-align:center;" | 466.667 | |||
| style="text-align:center;" | 933.333 | |||
| style="text-align:center;" | 200.000 | |||
| style="text-align:center;" | 666.667 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = 3</span> | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | e 1 e | |||
| style="text-align:center;" | 465.535 | |||
| style="text-align:center;" | 931.069 | |||
| style="text-align:center;" | 196.604 | |||
| style="text-align:center;" | 662.139 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = e</span> | |||
|- | |||
| | | |||
| | 19\49 | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | 8 3 8 | |||
| style="text-align:center;" | 465.306 | |||
| style="text-align:center;" | 930.612 | |||
| style="text-align:center;" | 195.918 | |||
| style="text-align:center;" | 661.2245 | |||
| | | |||
|- | |||
| | | |||
| | | |||
| | 50\129 | |||
| | | |||
| | | |||
| style="text-align:center;" | 21 8 21 | |||
| style="text-align:center;" | 465.116 | |||
| style="text-align:center;" | 930.233 | |||
| style="text-align:center;" | 195.349 | |||
| style="text-align:center;" | 660.465 | |||
| | | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 131\338 | |||
| | | |||
| style="text-align:center;" | 55 21 55 | |||
| style="text-align:center;" | 465.089 | |||
| style="text-align:center;" | 930.1775 | |||
| style="text-align:center;" | 195.266 | |||
| style="text-align:center;" | 660.335 | |||
| | | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | | |||
| | 212\547 | |||
| style="text-align:center;" | 89 34 89 | |||
| style="text-align:center;" | 465.082 | |||
| style="text-align:center;" | 930.1645 | |||
| style="text-align:center;" | 195.247 | |||
| style="text-align:center;" | 660.329 | |||
| | | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 81\209 | |||
| | | |||
| style="text-align:center;" | 34 13 34 | |||
| style="text-align:center;" | 465.072 | |||
| style="text-align:center;" | 930.1435 | |||
| style="text-align:center;" | 195.215 | |||
| style="text-align:center;" | 660.287 | |||
| | | |||
|- | |||
| | | |||
| | | |||
| | 31\80 | |||
| | | |||
| | | |||
| style="text-align:center;" | 13 5 13 | |||
| style="text-align:center;" | 465 | |||
| style="text-align:center;" | 930 | |||
| style="text-align:center;" | 195 | |||
| style="text-align:center;" | 660 | |||
| | | |||
|- | |||
| | | |||
| | 12\31 | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">5 2 5</span> | |||
| style="text-align:center;" | 464.516 | |||
| style="text-align:center;" | 929.032 | |||
| style="text-align:center;" | 193.549 | |||
| style="text-align:center;" | 658.065 | |||
| style="text-align:center;" | | |||
|- | |||
| | 5\13 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">2 1 2</span> | |||
| style="text-align:center;" | 461.538 | |||
| style="text-align:center;" | 923.077 | |||
| style="text-align:center;" | 184.615 | |||
| style="text-align:center;" | 646.154 | |||
| style="text-align:center;" | | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="background-color: #ffffff;">√3 1 √3</span> | |||
| style="text-align:center;" | 459.417 | |||
| style="text-align:center;" | 918.8345 | |||
| style="text-align:center;" | 178.252 | |||
| style="text-align:center;" | 637.669 | |||
| | | |||
|- | |||
| | | |||
| | 13\34 | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">5 3 5</span> | |||
| style="text-align:center;" | 458.824 | |||
| style="text-align:center;" | 917.647 | |||
| style="text-align:center;" | 176.471 | |||
| style="text-align:center;" | 635.294 | |||
| style="text-align:center;" | | |||
|- | |||
| | | |||
| | | |||
| | 34\89 | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">13 8 13</span> | |||
| style="text-align:center;" | 458.427 | |||
| style="text-align:center;" | 916.854 | |||
| style="text-align:center;" | 175.281 | |||
| style="text-align:center;" | 633.708 | |||
| style="text-align:center;" | | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 89\233 | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">34 21 34</span> | |||
| style="text-align:center;" | <span style="line-height: 15.6000003814697px;">458.369</span> | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">916.738</span> | |||
| style="text-align:center;" | 175.107 | |||
| style="text-align:center;" | <span style="line-height: 15.6000003814697px;">633.473</span> | |||
| style="text-align:center;" | | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | | |||
| | 233\610 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">89 55 89</span> | |||
| style="text-align:center;" | 458.361 | |||
| style="text-align:center;" | 916.721 | |||
| style="text-align:center;" | 175.082 | |||
| style="text-align:center;" | 633.443 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">Golden father</span> | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 144\377 | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">55 34 55</span> | |||
| style="text-align:center;" | 458.355 | |||
| style="text-align:center;" | 916.711 | |||
| style="text-align:center;" | 175.066 | |||
| style="text-align:center;" | 633.422 | |||
| style="text-align:center;" | | |||
|- | |||
| | | |||
| | | |||
| | 55\144 | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">21 13 21</span> | |||
| style="text-align:center;" | 458.333 | |||
| style="text-align:center;" | 916.666 | |||
| style="text-align:center;" | 175 | |||
| style="text-align:center;" | 633.333 | |||
| style="text-align:center;" | | |||
|- | |||
| | | |||
| | 21\55 | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">8 5 8</span> | |||
| style="text-align:center;" | 458.182 | |||
| style="text-align:center;" | 916.364 | |||
| style="text-align:center;" | 174.545 | |||
| style="text-align:center;" | 632.727 | |||
| style="text-align:center;" | | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">pi 2 pi</span> | |||
| style="text-align:center;" | 457.883 | |||
| style="text-align:center;" | 915.777 | |||
| style="text-align:center;" | 173.665 | |||
| style="text-align:center;" | 631.553 | |||
| | | |||
|- | |||
| | 8\21 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">3 2 3</span> | |||
| style="text-align:center;" | 457.143 | |||
| style="text-align:center;" | 914.286 | |||
| style="text-align:center;" | 171.429 | |||
| style="text-align:center;" | 628.571 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">Optimum rank range (L/s=3/2) father</span> | |||
|- | |||
| | 11\29 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">4 3 4</span> | |||
| style="text-align:center;" | 455.172 | |||
| style="text-align:center;" | 910.345 | |||
| style="text-align:center;" | 165.517 | |||
| style="text-align:center;" | 620.690 | |||
| style="text-align:center;" | | |||
|- | |||
| | 14\37 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | 5 4 5 | |||
| style="text-align:center;" | 454.054 | |||
| style="text-align:center;" | 908.108 | |||
| style="text-align:center;" | 162.162 | |||
| style="text-align:center;" | 616.216 | |||
| | | |||
|- | |||
| | 17\45 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | 6 5 6 | |||
| style="text-align:center;" | 453.333 | |||
| style="text-align:center;" | 906.667 | |||
| style="text-align:center;" | 160 | |||
| style="text-align:center;" | 613.333 | |||
| | | |||
|- | |||
| | 20\53 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | 7 6 7 | |||
| style="text-align:center;" | 452.83 | |||
| style="text-align:center;" | 905.66 | |||
| style="text-align:center;" | 158.491 | |||
| style="text-align:center;" | 611.321 | |||
| | | |||
|- | |||
| | 23\61 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | 8 7 8 | |||
| style="text-align:center;" | 452.459 | |||
| style="text-align:center;" | 904.918 | |||
| style="text-align:center;" | 157.377 | |||
| style="text-align:center;" | 609.836 | |||
| | | |||
|- | |||
| | 26\69 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | 9 8 9 | |||
| style="text-align:center;" | 452.174 | |||
| style="text-align:center;" | 904.348 | |||
| style="text-align:center;" | 156.522 | |||
| style="text-align:center;" | 608.696 | |||
| | | |||
|- | |||
| | 29\77 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | 10 9 10 | |||
| style="text-align:center;" | 451.948 | |||
| style="text-align:center;" | 903.896 | |||
| style="text-align:center;" | 155.844 | |||
| style="text-align:center;" | 607.792 | |||
| | | |||
|- | |||
| | 3\8 | |||
| | | |||
| | | |||
| | | |||
| | | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">1 1 1</span> | |||
| style="text-align:center;" | 450.000 | |||
| style="text-align:center;" | 900.000 | |||
| style="text-align:center;" | 150.000 | |||
| style="text-align:center;" | 600.000 | |||
| style="text-align:center;" | | |||
|} | |||
The only notable harmonic entropy minimum is Vulture/[[Hemifamity_temperaments|Buzzard]], in which four generators make a 3/1 (and three generators approximate an octave plus 8/7). The rest of this region is a kind of wasteland in terms of harmonious MOSes. | |||
By a weird coincidence, the other generator for this MOS will generate the same pattern within a tritave equivalence. By yet another weird coincidence, this MOS belongs to a temperament which has [[Bohlen-Pierce|Bohlen-Pierce]] as its index-2 subtemperament. In addition to being harmonious, this tuning of the MOS gives an L/s ratio between 3/1 and 3/2, which is squarely in the middle of the range, being thus neither too exaggerated nor too equalized to be recognizable as such, unlike in octaves, where the only notable harmonic entropy minimum is near a greatly exaggerated 10/1 L/s ratio. | |||
{| class="wikitable" | |||
|- | |||
! colspan="5" | generator | |||
! | tetrachord | |||
! | g in cents | |||
! | 2g | |||
! | 3g | |||
! | 4g | |||
! | Comments | |||
|- | |||
| style="text-align:center;" | 2\5 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 1 0 1 | |||
| style="text-align:center;" | 760.782 | |||
| style="text-align:center;" | 1521.564 | |||
| style="text-align:center;" | 380.391 | |||
| style="text-align:center;" | 1141.173 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | 27\68 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 13 1 13 | |||
| style="text-align:center;" | 755.188 | |||
| style="text-align:center;" | 1510.376 | |||
| style="text-align:center;" | 363.609 | |||
| style="text-align:center;" | 1118.797 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | ~6626 515 6626 | |||
| style="text-align:center;" | 755.132 | |||
| style="text-align:center;" | 1510.265 | |||
| style="text-align:center;" | 363.442 | |||
| style="text-align:center;" | 1118.574 | |||
| style="text-align:center;" | <span style="display: block; text-align: center;">2g=12/5 minus quarter comma</span> | |||
|- | |||
| style="text-align:center;" | 25\63 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 12 1 12 | |||
| style="text-align:center;" | 754.744 | |||
| style="text-align:center;" | 1509.488 | |||
| style="text-align:center;" | 362.277 | |||
| style="text-align:center;" | 1117.021 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | 23\58 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 11 1 11 | |||
| style="text-align:center;" | 754.2235 | |||
| style="text-align:center;" | 1508.447 | |||
| style="text-align:center;" | 360.716 | |||
| style="text-align:center;" | 1114.939 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | 21\53 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 10 1 10 | |||
| style="text-align:center;" | 753.605 | |||
| style="text-align:center;" | 1507.21 | |||
| style="text-align:center;" | 358.859 | |||
| style="text-align:center;" | 1112.464 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | 19\48 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 9 1 9 | |||
| style="text-align:center;" | 752.857 | |||
| style="text-align:center;" | 1505.714 | |||
| style="text-align:center;" | 356.617 | |||
| style="text-align:center;" | 1109.474 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | 17\43 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 8 1 8 | |||
| style="text-align:center;" | 751.936 | |||
| style="text-align:center;" | 1503.871 | |||
| style="text-align:center;" | 353.852 | |||
| style="text-align:center;" | 1105.788 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | 15\38 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 7 1 7 | |||
| style="text-align:center;" | 750.771 | |||
| style="text-align:center;" | 1501.543 | |||
| style="text-align:center;" | 350.36 | |||
| style="text-align:center;" | 1101.132 | |||
Revision as of 00:00, 17 July 2018
5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of 5edo = 480¢) to 3\8 (three degrees of 8edo = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:
generator | tetrachord | g in cents | 2g | 3g | 4g | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
2\5 | 1 0 1 | 480.000 | 960.000 | 240.00 | 720.000 | |||||
21\53 | 10 1 10 | 475.472 | 950.943 | 226.415 | 701.887 | Vulture/Buzzard is around here | ||||
19\48 | 9 1 9 | 475 | 950 | 225 | 700 | |||||
17\43 | 8 1 8 | 474.419 | 948.837 | 223.256 | 697.674 | |||||
15\38 | 7 1 7 | 473.684 | 947.368 | 221.053 | 694.737 | |||||
13\33 | 6 1 6 | 472.727 | 945.455 | 218.181 | 690.909 | |||||
11\28 | 5 1 5 | 471.429 | 942.857 | 214.286 | 685.714 | |||||
9\23 | 4 1 4 | 469.565 | 939.130 | 208.696 | 678.261 | L/s = 4 | ||||
pi 1 pi | 467.171 | 934.3425 | 201.514 | 668.685 | L/s = pi | |||||
7\18 | 3 1 3 | 466.667 | 933.333 | 200.000 | 666.667 | L/s = 3 | ||||
e 1 e | 465.535 | 931.069 | 196.604 | 662.139 | L/s = e | |||||
19\49 | 8 3 8 | 465.306 | 930.612 | 195.918 | 661.2245 | |||||
50\129 | 21 8 21 | 465.116 | 930.233 | 195.349 | 660.465 | |||||
131\338 | 55 21 55 | 465.089 | 930.1775 | 195.266 | 660.335 | |||||
212\547 | 89 34 89 | 465.082 | 930.1645 | 195.247 | 660.329 | |||||
81\209 | 34 13 34 | 465.072 | 930.1435 | 195.215 | 660.287 | |||||
31\80 | 13 5 13 | 465 | 930 | 195 | 660 | |||||
12\31 | 5 2 5 | 464.516 | 929.032 | 193.549 | 658.065 | |||||
5\13 | 2 1 2 | 461.538 | 923.077 | 184.615 | 646.154 | |||||
√3 1 √3 | 459.417 | 918.8345 | 178.252 | 637.669 | ||||||
13\34 | 5 3 5 | 458.824 | 917.647 | 176.471 | 635.294 | |||||
34\89 | 13 8 13 | 458.427 | 916.854 | 175.281 | 633.708 | |||||
89\233 | 34 21 34 | 458.369 | 916.738 | 175.107 | 633.473 | |||||
233\610 | 89 55 89 | 458.361 | 916.721 | 175.082 | 633.443 | Golden father | ||||
144\377 | 55 34 55 | 458.355 | 916.711 | 175.066 | 633.422 | |||||
55\144 | 21 13 21 | 458.333 | 916.666 | 175 | 633.333 | |||||
21\55 | 8 5 8 | 458.182 | 916.364 | 174.545 | 632.727 | |||||
pi 2 pi | 457.883 | 915.777 | 173.665 | 631.553 | ||||||
8\21 | 3 2 3 | 457.143 | 914.286 | 171.429 | 628.571 | Optimum rank range (L/s=3/2) father | ||||
11\29 | 4 3 4 | 455.172 | 910.345 | 165.517 | 620.690 | |||||
14\37 | 5 4 5 | 454.054 | 908.108 | 162.162 | 616.216 | |||||
17\45 | 6 5 6 | 453.333 | 906.667 | 160 | 613.333 | |||||
20\53 | 7 6 7 | 452.83 | 905.66 | 158.491 | 611.321 | |||||
23\61 | 8 7 8 | 452.459 | 904.918 | 157.377 | 609.836 | |||||
26\69 | 9 8 9 | 452.174 | 904.348 | 156.522 | 608.696 | |||||
29\77 | 10 9 10 | 451.948 | 903.896 | 155.844 | 607.792 | |||||
3\8 | 1 1 1 | 450.000 | 900.000 | 150.000 | 600.000 |
The only notable harmonic entropy minimum is Vulture/Buzzard, in which four generators make a 3/1 (and three generators approximate an octave plus 8/7). The rest of this region is a kind of wasteland in terms of harmonious MOSes.
By a weird coincidence, the other generator for this MOS will generate the same pattern within a tritave equivalence. By yet another weird coincidence, this MOS belongs to a temperament which has Bohlen-Pierce as its index-2 subtemperament. In addition to being harmonious, this tuning of the MOS gives an L/s ratio between 3/1 and 3/2, which is squarely in the middle of the range, being thus neither too exaggerated nor too equalized to be recognizable as such, unlike in octaves, where the only notable harmonic entropy minimum is near a greatly exaggerated 10/1 L/s ratio.
generator | tetrachord | g in cents | 2g | 3g | 4g | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
2\5 | 1 0 1 | 760.782 | 1521.564 | 380.391 | 1141.173 | |||||
27\68 | 13 1 13 | 755.188 | 1510.376 | 363.609 | 1118.797 | |||||
~6626 515 6626 | 755.132 | 1510.265 | 363.442 | 1118.574 | 2g=12/5 minus quarter comma | |||||
25\63 | 12 1 12 | 754.744 | 1509.488 | 362.277 | 1117.021 | |||||
23\58 | 11 1 11 | 754.2235 | 1508.447 | 360.716 | 1114.939 | |||||
21\53 | 10 1 10 | 753.605 | 1507.21 | 358.859 | 1112.464 | |||||
19\48 | 9 1 9 | 752.857 | 1505.714 | 356.617 | 1109.474 | |||||
17\43 | 8 1 8 | 751.936 | 1503.871 | 353.852 | 1105.788 | |||||
15\38 | 7 1 7 | 750.771 | 1501.543 | 350.36 | 1101.132 | |||||
28/71 | 13 2 13 | 750.067 | 1500.1335 | 348.245 | 1098.312 | |||||
41\104 | 19 3 19 | 749.809 | 1466.618 | 347.4725 | 1097.282 | 3g=11/3 near here | ||||
13\33 | 6 1 6 | 749.255 | 1498.51 | 345.81 | 1095.065 | |||||
24\61 | 11 2 11 | 748.31 | 1496.62 | 342.976 | 1091.286 | |||||
35\89 | 16 3 16 | 747.96 | 1495.92 | 341.924 | 1089.884 | |||||
46\117 | 21 4 21 | 747.777 | 1495.554 | 341.377 | 1089.154 | |||||
57\145 | 26 5 26 | 747.665 | 1495.33 | 341.04 | 1088.705 | |||||
5+√29 2 5+√29 | 747.648 | 1495.297 | 340.99 | 1088.638 | ||||||
68\173 | 31 6 31 | 747.589 | 1495.178 | 340.813 | 1088.402 | |||||
147\374 | 67 13 67 | 747.56 | 1495.12 | 340.725 | 1088.285 | 4g=45/8 near here | ||||
79\201 | 36 7 36 | 747.535 | 1495.069 | 340.649 | 1088.183 | |||||
11\28 | 5 1 5 | 747.197 | 1494.393 | 339.635 | 1086.831 | |||||
20\51 | 9 2 9 | 745.865 | 1491.729 | 335.639 | 1081.50 | |||||
29\74 | 13 3 13 | 745.361 | 1490.721 | 334.127 | 1079.488 | |||||
38/97 | 17 4 17 | 745.096 | 1490.192 | 333.332 | 1078.428 | |||||
2+√5 1 2+√5 | 754.051 | 1490.101 | 333.197 | 1078.247 | ||||||
47\120 | 21 5 21 | 744.932 | 1489.865 | 332.842 | 1077.7745 | |||||
9\23 | 4 1 4 | 744.243 | 1488.487 | 330.775 | 1075.018 | L/s = 4 | ||||
43\110 | 19 5 19 | 743.4915 | 1486.983 | 328.5195 | 1072.011 | |||||
77\197 | 34 9 34 | 743.404 | 1486.807 | 328.256 | 1071.66 | 4g=39/7 near here | ||||
34\87 | 15 4 15 | 743.293 | 1486.586 | 327.923 | 1071.216 | |||||
25\64 | 11 3 11 | 742.951 | 1485.902 | 326.899 | 1069.85 | |||||
16\41 | 7 2 7 | 742.226 | 1484.453 | 324.724 | 1066.95 | |||||
23\59 | 10 3 10 | 741.44 | 1482.88 | 322.365 | 1063.805 | |||||
3+√13 2 3+√13 | 741.289 | 1482.577 | 321.911 | 1063.20 | ||||||
30\77 | 13 4 13 | 741.021 | 1482.043 | 321.109 | 1062.131 | |||||
pi 1 pi | 740.449 | 1480.898 | 319.392 | 1056.841 | L/s = pi | |||||
7\18 | 3 1 3 | 739.649 | 1479.298 | 316.992 | 1056.642 | L/s = 3 | ||||
89\229 | 38 13 38 | 739.188 | 1478.376 | 315.608 | 1054.796 | 3g=18/5 near here | ||||
82\211 | 35 12 35 | 739.148 | 1478.297 | 315.49 | 1054.639 | |||||
75\193 | 32 11 32 | 739.102 | 1478.203 | 315.35 | 1054.452 | |||||
68\175 | 29 10 29 | 739.045 | 1478.091 | 315.181 | 1054.227 | |||||
61/157 | 26 9 26 | 738.976 | 1477.952 | 314.973 | 1053.949 | |||||
54\139 | 23 8 23 | 738.889 | 1477.778 | 314.712 | 1053.601 | |||||
47\121 | 20 7 20 | 738.776 | 1477.552 | 314.373 | 1053.149 | |||||
40\103 | 17 6 17 | 738.623 | 1477.247 | 313.915 | 1052.538 | |||||
33\85 | 14 5 14 | 738.406 | 1476.812 | 313.263 | 1051.669 | |||||
26\67 | 11 4 11 | 738.072 | 1476.144 | 312.261 | 1050.333 | |||||
e 1 e | 737.855 | 1478.71 | 311.61 | 1049.465 | L/s = e | |||||
19\49 | 8 3 8 | 737.493 | 1474.986 | 310.523 | 1048.016 | |||||
164\423 | 69 26 69 | 737.401 | 1474.802 | 310.248 | 1047.649 | 3g=18/5 minus quarter comma near here | ||||
145\374 | 61 23 61 | 737.389 | 1474.778 | 310.212 | 1047.601 | |||||
126\325 | 53 20 53 | 737.373 | 1474.747 | 310.165 | 1047.538 | |||||
107\276 | 45 17 45 | 737.352 | 1474.704 | 310.101 | 1047.453 | |||||
88\227 | 37 14 37 | 737.322 | 1474.644 | 310.01 | 1047.332 | |||||
69\178 | 29 11 29 | 737.275 | 1474.549 | 309.869 | 1047.144 | |||||
50\129 | 21 8 21 | 737.192 | 1474.384 | 309.621 | 1046.812 | |||||
131\338 | 55 21 55 | 737.148 | 1474.296 | 309.49 | 1046.638 | |||||
212\547 | 89 34 89 | 737.138 | 1474.276 | 309.459 | 1046.597 | |||||
81\209 | 34 13 34 | 737.121 | 1474.243 | 309.409 | 1046.53 | |||||
31\80 | 13 5 13 | 737.008 | 1474.015 | 309.068 | 1046.075 | |||||
12\31 | 5 2 5 | 736.241 | 1472.481 | 306.767 | 1043.007 | |||||
1+√2 1 1+√2 | 735.542 | 1471.084 | 304.6715 | 1040.214 | Silver false father | |||||
17\44 | 7 3 7 | 734.846 | 1469.693 | 302.584 | 1037.41 | |||||
22\57 | 9 4 9 | 734.088 | 1468.176 | 300.309 | 1034.397 | |||||
27\70 | 11 5 11 | 733.611 | 1467.222 | 298.879 | 1032.49 | |||||
59\153 | 24 11 24 | 733.434 | 1466.867 | 298.346 | 1031.779 | |||||
32\83 | 13 6 13 | 733.284 | 1466.568 | 297.897 | 1031.181 | 2g=7/3 near here | ||||
5\13 | 2 1 2 | 731.521 | 1463.042 | 292.609 | 1024.13 | |||||
53\138 | 21 11 21 | 730.461 | 1460.922 | 289.428 | 1018.889 | |||||
101\263 | 40 21 40 | 730.409 | 1460.817 | 289.271 | 1019.679 | 3g=39/11 near here | ||||
48\125 | 19 10 19 | 730.35 | 1460.701 | 289.097 | 1019.448 | |||||
43\112 | 17 9 17 | 730.215 | 1460.43 | 288.69 | 1018.905 | |||||
38\99 | 15 8 15 | 730.043 | 1460.087 | 288.175 | 1018.218 | |||||
71\185 | 28 15 28 | 729.9395 | 1459.879 | 287.8635 | 1017.803 | |||||
104\271 | 41 22 41 | 729.902 | 1459.803 | 287.75 | 1017.651 | 4g=27/5 near here | ||||
33\86 | 13 7 13 | 729.82 | 1459.64 | 287.505 | 1017.325 | |||||
28\73 | 11 6 11 | 729.547 | 1459.034 | 286.596 | 1016.113 | |||||
23\60 | 9 5 9 | 729.083 | 1458.1655 | 285.293 | 1014.376 | |||||
41\107 | 16 9 16 | 728.7865 | 1457.573 | 284.4045 | 1013.191 | 3g=99/28 near here | ||||
59\154 | 23 13 23 | 728.671 | 1457.342 | 284.058 | 1012.729 | |||||
77\201 | 30 17 30 | 728.61 | 1457.219 | 283.874 | 1012.483 | |||||
95\248 | 37 21 37 | 728.5715 | 1457.143 | 283.7595 | 1012.331 | Golden BP is index-2 near here | ||||
18\47 | 7 4 7 | 728.408 | 1456.817 | 283.27 | 1011.678 | |||||
√3 1 √3 | 728.159 | 1456.318 | 282.522 | 1010.6815 | ||||||
49\128 | 19 11 19 | 728.092 | 1456.184 | 282.321 | 1010.413 | 4g=27/5 minus third comma near here | ||||
31\81 | 12 7 12 | 727.909 | 1455.817 | 281.771 | 1009.68 | |||||
13\34 | 5 3 5 | 727.218 | 1454.436 | 279.699 | 1006.917 | |||||
34\89 | 13 8 13 | 726.59 | 1453.179 | 277.814 | 1004.403 | |||||
89\233 | 34 21 34 | 726.498 | 1452.996 | 277.538 | 1004.036 | |||||
233\610 | 89 55 89 | 726.4845 | 1452.969 | 277.4985 | 1003.983 | Golden false father | ||||
144\377 | 55 34 55 | 726.476 | 1452.952 | 277.473 | 1003.95 | |||||
55\144 | 21 13 21 | 726.441 | 1452.882 | 277.368 | 1003.809 | |||||
21\55 | 8 5 8 | 726.201 | 1452.402 | 276.468 | 1002.849 | |||||
pi 2 pi | 725.736 | 1451.472 | 275.252 | 1000.988 | ||||||
8\21 | 3 2 3 | 724.554 | 1449.109 | 271.708 | 996.226 | Optimum rank range (L/s=3/2) false father | ||||
~543 361 543 | 724.511 | 1449.022 | 271.579 | 996.09 | 4g=16/3 | |||||
27\71 | 10 7 10 | 723.279 | 1446.557 | 267.881 | 991.16 | |||||
46\121 | 17 12 17 | 723.057 | 1446.115 | 267.217 | 990.274 | |||||
65\171 | 24 17 24 | 722.965 | 1445.931 | 266.941 | 989.907 | 3g=7/2 near here | ||||
19\50 | 7 5 7 | 722.743 | 1445.486 | 266.274 | 989.017 | |||||
11\29 | 4 3 4 | 721.431 | 1442.862 | 262.338 | 983.77 | |||||
25\66 | 9 7 9 | 720.4375 | 1440.875 | 259.3575 | 979.795 | |||||
64\169 | 23 18 23 | 720.267 | 1440.534 | 258.848 | 979.113 | |||||
167\441 | 60 47 60 | 720.2415 | 1440.483 | 258.7965 | 979.001 | |||||
437\1154 | 157 123 157 | 720.238 | 1440.475 | 258.758 | 978.996 | |||||
270\713 | 97 76 97 | 720.235 | 1440.471 | 258.751 | 978.987 | |||||
103\272 | 37 29 37 | 720.226 | 1440.451 | 258.722 | 978.947 | |||||
39\103 | 14 11 14 | 720.158 | 1440.315 | 258.518 | 978.676 | |||||
14\37 | 5 4 5 | 719.659 | 1439.317 | 257.021 | 976.679 | |||||
31\82 | 11 9 11 | 719.032 | 1438.064 | 255.14 | 974.172 | |||||
79\209 | 28 23 28 | 718.921 | 1437.842 | 254.807 | 973.728 | |||||
206\545 | 73 60 73 | 718.904 | 1437.808 | 254.757 | 973.661 | |||||
539\1426 | 191 117 191 | 718.902 | 1437.803 | 254.75 | 973.652 | |||||
333\881 | 118 97 118 | 718.90 | 1437.80 | 254.745 | 973.6455 | |||||
127\336 | 45 37 45 | 718.893 | 1437.787 | 254.726 | 973.619 | |||||
48\127 | 17 14 17 | 718.849 | 1437.698 | 254.592 | 973.441 | |||||
17\45 | 6 5 6 | 718.516 | 1437.032 | 253.549 | 972.11 | |||||
20\53 | 7 6 7 | 717.719 | 1435.438 | 251.202 | 968.9205 | |||||
~401 344 401 | 717.695 | 1435.3905 | 251.131 | 968.826 | 4g=21/4 | |||||
23\61 | 8 7 8 | 717.131 | 1434.261 | 249.437 | 966.567 | |||||
~6682 5875 6682 | 716.9925 | 1433.985 | 249.0225 | 966.015 | 6g=12 | |||||
26\69 | 9 8 9 | 716.679 | 1433.357 | 248.081 | 964.76 | |||||
29\77 | 10 9 10 | 716.321 | 1432.641 | 247.007 | 963.328 | |||||
32\85 | 11 10 11 | 716.03 | 1432.06 | 246.135 | 962.1655 | |||||
35\93 | 12 11 12 | 715.7895 | 1431.759 | 245.4135 | 961.203 | |||||
38/101 | 13 12 13 | 715.587 | 1431.174 | 244.806 | 960.393 | 2g=16\7 near here | ||||
3\8 | 1 1 1 | 713.233 | 1426.466 | 237.744 | 950.9775 |
.