50edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 234314664 - Original comment: ** |
Wikispaces>xenwolf **Imported revision 234381634 - Original comment: only some links added** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-05 14:30:26 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>234381634</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt>only some links added</tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//50edo// divides the octave into 50 equal parts of precisely 24 | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure. | ||
50 tempers out 126/125 in the 7-limit, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the 11-limit and 105/104, 144/143 and 196/195 in the 13-limit, and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&50 temperament. | 50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&50 temperament. | ||
[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]] | [[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]] | ||
Line 70: | Line 70: | ||
|| 49 || 1176 ||</pre></div> | || 49 || 1176 ||</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>50edo</title></head><body><em>50edo</em> divides the octave into 50 equal parts of precisely 24 | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In &quot;Harmonics or the Philosophy of Musical Sounds&quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure. <br /> | ||
<br /> | <br /> | ||
50 tempers out 126/125 in the 7-limit, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the 11-limit and 105/104, 144/143 and 196/195 in the 13-limit, and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&amp;50 temperament.<br /> | 50 tempers out 126/125 in the <a class="wiki_link" href="/7-limit">7-limit</a>, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the <a class="wiki_link" href="/11-limit">11-limit</a> and 105/104, 144/143 and 196/195 in the <a class="wiki_link" href="/13-limit">13-limit</a>, and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&amp;50 temperament.<br /> | ||
<br /> | <br /> | ||
<a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br /> | <a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br /> |
Revision as of 14:30, 5 June 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author xenwolf and made on 2011-06-05 14:30:26 UTC.
- The original revision id was 234381634.
- The revision comment was: only some links added
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure. 50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&50 temperament. [[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]] [[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]] ==Relations== The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup. ==Intervals== || Degrees of 50-EDO || Cents value || || 0 || 0 || || 1 || 24 || || 2 || 48 || || 3 || 72 || || 4 || 96 || || 5 || 120 || || 6 || 144 || || 7 || 168 || || 8 || 192 || || 9 || 216 || || 10 || 240 || || 11 || 264 || || 12 || 288 || || 13 || 312 || || 14 || 336 || || 15 || 360 || || 16 || 384 || || 17 || 408 || || 18 || 432 || || 19 || 456 || || 20 || 480 || || 21 || 504 || || 22 || 528 || || 23 || 552 || || 24 || 576 || || 25 || 600 || || 26 || 624 || || 27 || 648 || || 28 || 672 || || 29 || 696 || || 30 || 720 || || 31 || 744 || || 32 || 768 || || 33 || 792 || || 34 || 816 || || 35 || 840 || || 36 || 864 || || 37 || 888 || || 38 || 912 || || 39 || 936 || || 40 || 960 || || 41 || 984 || || 42 || 1008 || || 43 || 1032 || || 44 || 1056 || || 45 || 1080 || || 46 || 1104 || || 47 || 1128 || || 48 || 1152 || || 49 || 1176 ||
Original HTML content:
<html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure. <br /> <br /> 50 tempers out 126/125 in the <a class="wiki_link" href="/7-limit">7-limit</a>, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the <a class="wiki_link" href="/11-limit">11-limit</a> and 105/104, 144/143 and 196/195 in the <a class="wiki_link" href="/13-limit">13-limit</a>, and can be used for even higher limits. Aside from meantone, it can be used to advantage for the 15&50 temperament.<br /> <br /> <a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br /> <a class="wiki_link_ext" href="http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html" rel="nofollow">More information about Robert Smith's temperament</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Relations"></a><!-- ws:end:WikiTextHeadingRule:0 -->Relations</h2> The 50-edo system is related to <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/19edo">19edo</a>, <a class="wiki_link" href="/31edo">31edo</a> as the next approximation to the "Golden Tone System" (<a class="wiki_link" href="/Das%20Goldene%20Tonsystem">Das Goldene Tonsystem</a>) of Thorvald Kornerup.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> <br /> <table class="wiki_table"> <tr> <td>Degrees of 50-EDO<br /> </td> <td>Cents value<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> </tr> <tr> <td>1<br /> </td> <td>24<br /> </td> </tr> <tr> <td>2<br /> </td> <td>48<br /> </td> </tr> <tr> <td>3<br /> </td> <td>72<br /> </td> </tr> <tr> <td>4<br /> </td> <td>96<br /> </td> </tr> <tr> <td>5<br /> </td> <td>120<br /> </td> </tr> <tr> <td>6<br /> </td> <td>144<br /> </td> </tr> <tr> <td>7<br /> </td> <td>168<br /> </td> </tr> <tr> <td>8<br /> </td> <td>192<br /> </td> </tr> <tr> <td>9<br /> </td> <td>216<br /> </td> </tr> <tr> <td>10<br /> </td> <td>240<br /> </td> </tr> <tr> <td>11<br /> </td> <td>264<br /> </td> </tr> <tr> <td>12<br /> </td> <td>288<br /> </td> </tr> <tr> <td>13<br /> </td> <td>312<br /> </td> </tr> <tr> <td>14<br /> </td> <td>336<br /> </td> </tr> <tr> <td>15<br /> </td> <td>360<br /> </td> </tr> <tr> <td>16<br /> </td> <td>384<br /> </td> </tr> <tr> <td>17<br /> </td> <td>408<br /> </td> </tr> <tr> <td>18<br /> </td> <td>432<br /> </td> </tr> <tr> <td>19<br /> </td> <td>456<br /> </td> </tr> <tr> <td>20<br /> </td> <td>480<br /> </td> </tr> <tr> <td>21<br /> </td> <td>504<br /> </td> </tr> <tr> <td>22<br /> </td> <td>528<br /> </td> </tr> <tr> <td>23<br /> </td> <td>552<br /> </td> </tr> <tr> <td>24<br /> </td> <td>576<br /> </td> </tr> <tr> <td>25<br /> </td> <td>600<br /> </td> </tr> <tr> <td>26<br /> </td> <td>624<br /> </td> </tr> <tr> <td>27<br /> </td> <td>648<br /> </td> </tr> <tr> <td>28<br /> </td> <td>672<br /> </td> </tr> <tr> <td>29<br /> </td> <td>696<br /> </td> </tr> <tr> <td>30<br /> </td> <td>720<br /> </td> </tr> <tr> <td>31<br /> </td> <td>744<br /> </td> </tr> <tr> <td>32<br /> </td> <td>768<br /> </td> </tr> <tr> <td>33<br /> </td> <td>792<br /> </td> </tr> <tr> <td>34<br /> </td> <td>816<br /> </td> </tr> <tr> <td>35<br /> </td> <td>840<br /> </td> </tr> <tr> <td>36<br /> </td> <td>864<br /> </td> </tr> <tr> <td>37<br /> </td> <td>888<br /> </td> </tr> <tr> <td>38<br /> </td> <td>912<br /> </td> </tr> <tr> <td>39<br /> </td> <td>936<br /> </td> </tr> <tr> <td>40<br /> </td> <td>960<br /> </td> </tr> <tr> <td>41<br /> </td> <td>984<br /> </td> </tr> <tr> <td>42<br /> </td> <td>1008<br /> </td> </tr> <tr> <td>43<br /> </td> <td>1032<br /> </td> </tr> <tr> <td>44<br /> </td> <td>1056<br /> </td> </tr> <tr> <td>45<br /> </td> <td>1080<br /> </td> </tr> <tr> <td>46<br /> </td> <td>1104<br /> </td> </tr> <tr> <td>47<br /> </td> <td>1128<br /> </td> </tr> <tr> <td>48<br /> </td> <td>1152<br /> </td> </tr> <tr> <td>49<br /> </td> <td>1176<br /> </td> </tr> </table> </body></html>