2048edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
Created page with "{{EDO intro|2048}} == Theory == {{Harmonics in equal|2048}} 2048edo has an excellent perfect fifth, which derives from 1024edo. It tempers out the breedsma (2401/2400) in the..."
 
Eliora (talk | contribs)
No edit summary
Line 5: Line 5:
2048edo has an excellent perfect fifth, which derives from 1024edo. It tempers out the breedsma (2401/2400) in the 7-limit, and supports the rank 3 breed temperament.
2048edo has an excellent perfect fifth, which derives from 1024edo. It tempers out the breedsma (2401/2400) in the 7-limit, and supports the rank 3 breed temperament.


2048edo is usable as high as 43-limit, with the 2048f val regular temperament having an error of 0.023 cents (0.04 edosteps) per octave, and the no-13s limit patent val has an error of only 0.019 cents/octave.
2048edo is usable as high as 43-limit, with the 2048f val regular temperament having an error of 0.023 cents (0.04 edosteps) per octave, and the no-13s limit patent val is unambiguous and has an error of only 0.019 cents/octave.


2048edo is the 11th power of two EDO.
2048edo is the 11th power of two EDO.
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |Subgroup
! rowspan="2" |[[Comma list]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal
8ve stretch (¢)
! colspan="2" |Tuning error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|2.3.5
|{{monzo|54, -37, 2}},{{monzo|-111, -12, 56}}
|[{{val|2048 3246 4755}}]
|
|
|
|-
|2.3.5.7
|2401/2400, {{monzo|-18, -13, 13, 3}}, {{monzo|49, -38, 0, 4}}
|[{{val|2048 3246 4755 5749}}]
|
|
|
|}

Revision as of 10:18, 7 June 2022

Template:EDO intro

Theory

Approximation of prime harmonics in 2048edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.002 -0.181 -0.271 +0.049 +0.293 -0.073 +0.143 -0.149 -0.085 -0.114
Relative (%) +0.0 -0.3 -30.9 -46.3 +8.4 +49.9 -12.4 +24.4 -25.5 -14.5 -19.4
Steps
(reduced)
2048
(0)
3246
(1198)
4755
(659)
5749
(1653)
7085
(941)
7579
(1435)
8371
(179)
8700
(508)
9264
(1072)
9949
(1757)
10146
(1954)

2048edo has an excellent perfect fifth, which derives from 1024edo. It tempers out the breedsma (2401/2400) in the 7-limit, and supports the rank 3 breed temperament.

2048edo is usable as high as 43-limit, with the 2048f val regular temperament having an error of 0.023 cents (0.04 edosteps) per octave, and the no-13s limit patent val is unambiguous and has an error of only 0.019 cents/octave.

2048edo is the 11th power of two EDO.

Regular temperament properties

Subgroup Comma list Mapping Optimal

8ve stretch (¢)

Tuning error
Absolute (¢) Relative (%)
2.3.5 [54, -37, 2,[-111, -12, 56 [2048 3246 4755]]
2.3.5.7 2401/2400, [-18, -13, 13, 3, [49, -38, 0, 4 [2048 3246 4755 5749]]