35edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Osmiorisbendi
**Imported revision 329137890 - Original comment: **
Wikispaces>guest
**Imported revision 329410090 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2012-05-03 01:33:17 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-05-03 11:19:54 UTC</tt>.<br>
: The original revision id was <tt>329137890</tt>.<br>
: The original revision id was <tt>329410090</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #ff4100;"&gt;35 tone equal temperament&lt;/span&gt;=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #ff4100;"&gt;35 tone equal temperament&lt;/span&gt;=  


35-tET or 35-[[edo|EDO]], refers to a tuning system which divides the octave into 35 steps of approximately [[cent|34.29¢]] each.
35-tET or 35-[[xenharmonic/edo|EDO]], refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.


As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal edos]]: [[5edo]] and [[7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.


35edo can represent the 2.3.5.7.11.17 [[Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.
 
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[MOS]] of 3L2s: 9 4 9 9 4.


==Intervals==  
==Intervals==  
Line 56: Line 54:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x35 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #ff4100;"&gt;35 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x35 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #ff4100;"&gt;35 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
35-tET or 35-&lt;a class="wiki_link" href="/edo"&gt;EDO&lt;/a&gt;, refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
35-tET or 35-&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;EDO&lt;/a&gt;, refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
35edo can represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a &lt;a class="wiki_link" href="/MOS"&gt;MOS&lt;/a&gt; of 3L2s: 9 4 9 9 4.&lt;br /&gt;
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; of 3L2s: 9 4 9 9 4.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x35 tone equal temperament-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x35 tone equal temperament-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;

Revision as of 11:19, 3 May 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2012-05-03 11:19:54 UTC.
The original revision id was 329410090.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #ff4100;">35 tone equal temperament</span>= 

35-tET or 35-[[xenharmonic/edo|EDO]], refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.

As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.

A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.

==Intervals== 
|| Degrees of 35-EDO || Cents value || Ratios in 2.3.5.7.11.17 subgroup || Ratios in 2.9.5.7.11.17 subgroup ||
|| 0 || 0 || 1/1 ||   ||
|| 1 || 34,29 ||   ||   ||
|| 2 || 68,57 ||   ||   ||
|| 3 || 102,86 || 17/16 || 17/16, 18/17 ||
|| 4 || 137,14 || 12/11 ||   ||
|| 5 || 171,43 || 11/10 || 10/9, 11/10 ||
|| 6 || 205,71 ||   || 9/8 ||
|| 7 || 240 || 8/7 || 8/7 ||
|| 8 || 274,29 || 7/6, 20/17 || 20/17 ||
|| 9 || 308,57 || 6/5 ||   ||
|| 10 || 342,86 || 17/14 || 11/9, 17/14 ||
|| 11 || 377,14 || 5/4 || 5/4 ||
|| 12 || 411,43 || 14/11 || 14/11 ||
|| 13 || 445,71 || 22/17 || 9/7, 22/17 ||
|| 14 || 480 ||   ||   ||
|| 15 || 514,29 || 4/3 ||   ||
|| 16 || 548,57 || 11/8 || 11/8 ||
|| 17 || 582,86 || 7/5, 24/17 || 7/8 ||
|| 18 || 617,14 || 10/7, 17/12 || 10/7 ||
|| 19 || 651,43 || 16/11 || 16/11 ||
|| 20 || 685,71 || 3/2 ||   ||
|| 21 || 720 ||   ||   ||
|| 22 || 754,29 || 17/11 || 14/9, 17/11 ||
|| 23 || 788,57 || 11/7 || 11/7 ||
|| 24 || 822,86 || 8/5 || 8/5 ||
|| 25 || 857,15 ||   || 18/11 ||
|| 26 || 891,43 || 5/3 ||   ||
|| 27 || 925,71 || 12/7, 17/10 || 17/10 ||
|| 28 || 960 || 7/4 || 7/4 ||
|| 29 || 994,29 ||   || 16/9 ||
|| 30 || 1028,57 || 20/11 || 20/11, 9/5 ||
|| 31 || 1062,86 || 11/6 ||   ||
|| 32 || 1097,14 || 32/17 || 32/17, 17/9 ||
|| 33 || 1131,43 ||   ||   ||
|| 34 || 1165,71 ||   ||   ||

Original HTML content:

<html><head><title>35edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x35 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ff4100;">35 tone equal temperament</span></h1>
 <br />
35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a>, refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br />
<br />
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore it is a very versatile whitewood tuning.<br />
<br />
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x35 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>Degrees of 35-EDO<br />
</td>
        <td>Cents value<br />
</td>
        <td>Ratios in 2.3.5.7.11.17 subgroup<br />
</td>
        <td>Ratios in 2.9.5.7.11.17 subgroup<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>34,29<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>68,57<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>102,86<br />
</td>
        <td>17/16<br />
</td>
        <td>17/16, 18/17<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>137,14<br />
</td>
        <td>12/11<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>171,43<br />
</td>
        <td>11/10<br />
</td>
        <td>10/9, 11/10<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>205,71<br />
</td>
        <td><br />
</td>
        <td>9/8<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>240<br />
</td>
        <td>8/7<br />
</td>
        <td>8/7<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>274,29<br />
</td>
        <td>7/6, 20/17<br />
</td>
        <td>20/17<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>308,57<br />
</td>
        <td>6/5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>342,86<br />
</td>
        <td>17/14<br />
</td>
        <td>11/9, 17/14<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>377,14<br />
</td>
        <td>5/4<br />
</td>
        <td>5/4<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>411,43<br />
</td>
        <td>14/11<br />
</td>
        <td>14/11<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>445,71<br />
</td>
        <td>22/17<br />
</td>
        <td>9/7, 22/17<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>480<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>514,29<br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>548,57<br />
</td>
        <td>11/8<br />
</td>
        <td>11/8<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>582,86<br />
</td>
        <td>7/5, 24/17<br />
</td>
        <td>7/8<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>617,14<br />
</td>
        <td>10/7, 17/12<br />
</td>
        <td>10/7<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>651,43<br />
</td>
        <td>16/11<br />
</td>
        <td>16/11<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>685,71<br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>720<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>754,29<br />
</td>
        <td>17/11<br />
</td>
        <td>14/9, 17/11<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>788,57<br />
</td>
        <td>11/7<br />
</td>
        <td>11/7<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>822,86<br />
</td>
        <td>8/5<br />
</td>
        <td>8/5<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>857,15<br />
</td>
        <td><br />
</td>
        <td>18/11<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>891,43<br />
</td>
        <td>5/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>925,71<br />
</td>
        <td>12/7, 17/10<br />
</td>
        <td>17/10<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>960<br />
</td>
        <td>7/4<br />
</td>
        <td>7/4<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>994,29<br />
</td>
        <td><br />
</td>
        <td>16/9<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1028,57<br />
</td>
        <td>20/11<br />
</td>
        <td>20/11, 9/5<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1062,86<br />
</td>
        <td>11/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1097,14<br />
</td>
        <td>32/17<br />
</td>
        <td>32/17, 17/9<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1131,43<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1165,71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

</body></html>