35edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>phylingual
**Imported revision 330017132 - Original comment: **
Wikispaces>keenanpepper
**Imported revision 330244846 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-04 11:24:21 UTC</tt>.<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2012-05-04 18:47:34 UTC</tt>.<br>
: The original revision id was <tt>330017132</tt>.<br>
: The original revision id was <tt>330244846</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 52: Line 52:
|| 34 || 1165.71 ||  ||  ||  ||
|| 34 || 1165.71 ||  ||  ||  ||
=Rank two temperaments=  
=Rank two temperaments=  


||~ Periods
||~ Periods
per octave ||~ Generator ||~ Temperaments ||
per octave ||~ Generator ||~ Temperaments ||
|| 1 || 1\35 ||  ||
|| 1 || 2\35 ||  ||
|| 1 || 3\35 || Ripple ||
|| 1 || 3\35 || Ripple ||
|| 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] ||
|| 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] ||
|| 1 || 6\35 ||  ||
|| 1 || 6\35 ||  ||
|| 1 || 8\35 ||   ||
|| 1 || 8\35 || Messed-up [[Orwell]] ||
|| 1 || 9\35 || [[xenharmonic/Myna|Myna]] ||
|| 1 || 9\35 || [[xenharmonic/Myna|Myna]] ||
|| 1 || 11\35 || [[xenharmonic/Magic|Magic]] ||
|| 1 || 11\35 || [[xenharmonic/Magic|Magic]] ||
Line 66: Line 67:
|| 1 || 16\35 ||  ||
|| 1 || 16\35 ||  ||
|| 1 || 17\35 ||  ||
|| 1 || 17\35 ||  ||
||   ||   ||  ||
|| 5 || 1\35 ||  ||
|| 5 || 2\35 ||   ||
|| 5 || 2\35 || [[Blackwood]] ||
||   ||   ||  ||
|| 5 || 3\35 ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] ||
Line 540: Line 541:
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Rank two temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Rank two temperaments&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Rank two temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Rank two temperaments&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;br /&gt;




Line 552: Line 552:
         &lt;th&gt;Temperaments&lt;br /&gt;
         &lt;th&gt;Temperaments&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1\35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
Line 582: Line 598:
         &lt;td&gt;8\35&lt;br /&gt;
         &lt;td&gt;8\35&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;Messed-up &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 634: Line 650:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;1\35&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 646: Line 662:
         &lt;td&gt;2\35&lt;br /&gt;
         &lt;td&gt;2\35&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;3\35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;

Revision as of 18:47, 4 May 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author keenanpepper and made on 2012-05-04 18:47:34 UTC.
The original revision id was 330244846.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.

As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore [[xenharmonic/22edo|22edo]]'s consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments.

A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.

=Intervals= 


|| Degrees of 35-EDO || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with 9 ||
|| 0 || 0 || 1/1 ||   ||   ||
|| 1 || 34.29 ||   ||   ||   ||
|| 2 || 68.57 ||   ||   ||   ||
|| 3 || 102.86 || 17/16 ||   || 18/17 ||
|| 4 || 137.14 ||   || 12/11 ||   ||
|| 5 || 171.43 || 11/10 ||   || 10/9 ||
|| 6 || 205.71 ||   ||   || 9/8 ||
|| 7 || 240 || 8/7 ||   ||   ||
|| 8 || 274.29 || 20/17 || 7/6 ||   ||
|| 9 || 308.57 ||   || 6/5 ||   ||
|| 10 || 342.86 || 17/14 ||   || 11/9 ||
|| 11 || 377.14 || 5/4 ||   ||   ||
|| 12 || 411.43 || 14/11 ||   || 14/11 ||
|| 13 || 445.71 || 22/17 ||   || 9/7 ||
|| 14 || 480 ||   ||   ||   ||
|| 15 || 514.29 ||   || 4/3 ||   ||
|| 16 || 548.57 || 11/8 ||   ||   ||
|| 17 || 582.86 || 7/5 || 24/17 ||   ||
|| 18 || 617.14 || 10/7 || 17/12 ||   ||
|| 19 || 651.43 || 16/11 ||   ||   ||
|| 20 || 685.71 ||   || 3/2 ||   ||
|| 21 || 720 ||   ||   ||   ||
|| 22 || 754.29 || 17/11 ||   || 14/9 ||
|| 23 || 788.57 || 11/7 ||   ||   ||
|| 24 || 822.86 || 8/5 ||   ||   ||
|| 25 || 857.15 ||   ||   || 18/11 ||
|| 26 || 891.43 ||   || 5/3 ||   ||
|| 27 || 925.71 || 17/10 || 12/7 ||   ||
|| 28 || 960 || 7/4 ||   ||   ||
|| 29 || 994.29 ||   ||   || 16/9 ||
|| 30 || 1028.57 || 20/11 ||   || 9/5 ||
|| 31 || 1062.86 ||   || 11/6 ||   ||
|| 32 || 1097.14 || 32/17 ||   || 17/9 ||
|| 33 || 1131.43 ||   ||   ||   ||
|| 34 || 1165.71 ||   ||   ||   ||
=Rank two temperaments= 

||~ Periods
per octave ||~ Generator ||~ Temperaments ||
|| 1 || 1\35 ||   ||
|| 1 || 2\35 ||   ||
|| 1 || 3\35 || Ripple ||
|| 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] ||
|| 1 || 6\35 ||   ||
|| 1 || 8\35 || Messed-up [[Orwell]] ||
|| 1 || 9\35 || [[xenharmonic/Myna|Myna]] ||
|| 1 || 11\35 || [[xenharmonic/Magic|Magic]] ||
|| 1 || 12\35 ||   ||
|| 1 || 13\35 || [[xenharmonic/Sensipent family|Sensipent]] ||
|| 1 || 16\35 ||   ||
|| 1 || 17\35 ||   ||
|| 5 || 1\35 ||   ||
|| 5 || 2\35 || [[Blackwood]] ||
|| 5 || 3\35 ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] ||
==<span style="background-color: #ffffff;">Commas</span>== 
35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.)
== == 

== == 
||~ **Comma** ||~ **Monzo** ||~ **Value (Cents)** ||~ **Name 1** ||~ **Name 2** ||~ **Name 3** ||
||= 2187/2048 || | -11 7 > ||> 113.69 ||= Apotome ||= Whitewood comma ||   ||
||= 6561/6250 || | -1 8 -5 > ||> 84.07 ||= Ripple comma ||=   ||   ||
||= 10077696/9765625 || | 9 9 -10 > ||> 54.46 ||= Mynic comma ||=   ||   ||
||= 3125/3072 || | -10 -1 5 > ||> 29.61 ||= Small diesis ||= Magic comma ||   ||
||= 78732/78125 || | 2 9 -7 > ||> 13.40 ||= Medium semicomma ||= Sensipent comma ||   ||
||= 405/392 || | -3 4 1 -2 > ||> 56.48 ||= Greenwoodma ||=   ||   ||
||= 16807/16384 || | -14 0 0 5 > ||> 44.13 ||=   ||=   ||   ||
||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||=   ||   ||
||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma ||   ||
||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||=   ||   ||
||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||=   ||=   ||   ||
== == 

== == 

Original HTML content:

<html><head><title>35edo</title></head><body>35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br />
<br />
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br />
<br />
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1>
 <br />
<br />


<table class="wiki_table">
    <tr>
        <td>Degrees of 35-EDO<br />
</td>
        <td>Cents value<br />
</td>
        <td>Ratios in 2.5.7.11.17 subgroup<br />
</td>
        <td>Ratios with flat 3<br />
</td>
        <td>Ratios with 9<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>34.29<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>68.57<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>102.86<br />
</td>
        <td>17/16<br />
</td>
        <td><br />
</td>
        <td>18/17<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>137.14<br />
</td>
        <td><br />
</td>
        <td>12/11<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>171.43<br />
</td>
        <td>11/10<br />
</td>
        <td><br />
</td>
        <td>10/9<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>205.71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/8<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>240<br />
</td>
        <td>8/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>274.29<br />
</td>
        <td>20/17<br />
</td>
        <td>7/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>308.57<br />
</td>
        <td><br />
</td>
        <td>6/5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>342.86<br />
</td>
        <td>17/14<br />
</td>
        <td><br />
</td>
        <td>11/9<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>377.14<br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>411.43<br />
</td>
        <td>14/11<br />
</td>
        <td><br />
</td>
        <td>14/11<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>445.71<br />
</td>
        <td>22/17<br />
</td>
        <td><br />
</td>
        <td>9/7<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>480<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>514.29<br />
</td>
        <td><br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>548.57<br />
</td>
        <td>11/8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>582.86<br />
</td>
        <td>7/5<br />
</td>
        <td>24/17<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>617.14<br />
</td>
        <td>10/7<br />
</td>
        <td>17/12<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>651.43<br />
</td>
        <td>16/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>685.71<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>720<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>754.29<br />
</td>
        <td>17/11<br />
</td>
        <td><br />
</td>
        <td>14/9<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>788.57<br />
</td>
        <td>11/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>822.86<br />
</td>
        <td>8/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>857.15<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/11<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>891.43<br />
</td>
        <td><br />
</td>
        <td>5/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>925.71<br />
</td>
        <td>17/10<br />
</td>
        <td>12/7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>960<br />
</td>
        <td>7/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>994.29<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>16/9<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1028.57<br />
</td>
        <td>20/11<br />
</td>
        <td><br />
</td>
        <td>9/5<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1062.86<br />
</td>
        <td><br />
</td>
        <td>11/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1097.14<br />
</td>
        <td>32/17<br />
</td>
        <td><br />
</td>
        <td>17/9<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1131.43<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1165.71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Rank two temperaments</h1>
 <br />


<table class="wiki_table">
    <tr>
        <th>Periods<br />
per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Temperaments<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>2\35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>3\35<br />
</td>
        <td>Ripple<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>4\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">Secund</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>6\35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>8\35<br />
</td>
        <td>Messed-up <a class="wiki_link" href="/Orwell">Orwell</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>9\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Myna">Myna</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Magic">Magic</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>12\35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sensipent%20family">Sensipent</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>16\35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>17\35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>1\35<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>2\35<br />
</td>
        <td><a class="wiki_link" href="/Blackwood">Blackwood</a><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>3\35<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>1\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood">Redwood</a><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>2\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Greenwood">Greenwood</a><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Rank two temperaments-Commas"></a><!-- ws:end:WikiTextHeadingRule:4 --><span style="background-color: #ffffff;">Commas</span></h2>
 35EDO tempers out the following commas. (Note: This assumes the val &lt;35 55 81 98 121 130|.)<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h2>
 <br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><!-- ws:end:WikiTextHeadingRule:8 --> </h2>
 

<table class="wiki_table">
    <tr>
        <th><strong>Comma</strong><br />
</th>
        <th><strong>Monzo</strong><br />
</th>
        <th><strong>Value (Cents)</strong><br />
</th>
        <th><strong>Name 1</strong><br />
</th>
        <th><strong>Name 2</strong><br />
</th>
        <th><strong>Name 3</strong><br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">2187/2048<br />
</td>
        <td>| -11 7 &gt;<br />
</td>
        <td style="text-align: right;">113.69<br />
</td>
        <td style="text-align: center;">Apotome<br />
</td>
        <td style="text-align: center;">Whitewood comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">6561/6250<br />
</td>
        <td>| -1 8 -5 &gt;<br />
</td>
        <td style="text-align: right;">84.07<br />
</td>
        <td style="text-align: center;">Ripple comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">10077696/9765625<br />
</td>
        <td>| 9 9 -10 &gt;<br />
</td>
        <td style="text-align: right;">54.46<br />
</td>
        <td style="text-align: center;">Mynic comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3125/3072<br />
</td>
        <td>| -10 -1 5 &gt;<br />
</td>
        <td style="text-align: right;">29.61<br />
</td>
        <td style="text-align: center;">Small diesis<br />
</td>
        <td style="text-align: center;">Magic comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">78732/78125<br />
</td>
        <td>| 2 9 -7 &gt;<br />
</td>
        <td style="text-align: right;">13.40<br />
</td>
        <td style="text-align: center;">Medium semicomma<br />
</td>
        <td style="text-align: center;">Sensipent comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">405/392<br />
</td>
        <td>| -3 4 1 -2 &gt;<br />
</td>
        <td style="text-align: right;">56.48<br />
</td>
        <td style="text-align: center;">Greenwoodma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">16807/16384<br />
</td>
        <td>| -14 0 0 5 &gt;<br />
</td>
        <td style="text-align: right;">44.13<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">525/512<br />
</td>
        <td>| -9 1 2 1 &gt;<br />
</td>
        <td style="text-align: right;">43.41<br />
</td>
        <td style="text-align: center;">Avicennma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">126/125<br />
</td>
        <td>| 1 2 -3 1 &gt;<br />
</td>
        <td style="text-align: right;">13.79<br />
</td>
        <td style="text-align: center;">Starling comma<br />
</td>
        <td style="text-align: center;">Septimal semicomma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">99/98<br />
</td>
        <td>| -1 2 0 -2 1 &gt;<br />
</td>
        <td style="text-align: right;">17.58<br />
</td>
        <td style="text-align: center;">Mothwellsma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">66/65<br />
</td>
        <td>| 1 1 -1 0 1 -1 &gt;<br />
</td>
        <td style="text-align: right;">26.43<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><!-- ws:end:WikiTextHeadingRule:10 --> </h2>
 <br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><!-- ws:end:WikiTextHeadingRule:12 --> </h2>
</body></html>