35edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>phylingual **Imported revision 330633216 - Original comment: ** |
Wikispaces>phylingual **Imported revision 330635360 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-06 08: | : This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-06 08:50:45 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>330635360</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 11: | Line 11: | ||
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments. | more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments. | ||
A good | A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4. | ||
=Intervals= | =Intervals= | ||
(Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.) | |||
|| Degrees || Solfege || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with sharp 3 || Ratios with 9 || | || Degrees || Solfege || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with sharp 3 || Ratios with 9 || | ||
|| 0 || do || 0 || 1/1 || (see comma table) || || || | || 0 || do || 0 || **1/1** || (see comma table) || || || | ||
|| 1 || du || 34.29 || 50/49, 121/119 || 36/35 || 25/24 || 81/80 || | || 1 || du || 34.29 || **50/49**, **121/119**, 33/32 || **36/35** || 25/24 || **81/80** || | ||
|| 2 || di || 68.57 || 128/125 || 25/24 || || || | || 2 || di || 68.57 || 128/125 || **25/24** || || || | ||
|| 3 || ra || 102.86 || 17/16 || || 16/15 || 18/17 || | || 3 || ra || 102.86 || **17/16** || || **16/15** || **18/17** || | ||
|| 4 || ru || 137.14 || || 12/11, 16/15 || || || | || 4 || ru || 137.14 || || **12/11**, 16/15 || || || | ||
|| 5 || ro || 171.43 || 11/10 || || 12/11 || 10/9 || | || 5 || ro || 171.43 || **11/10** || || 12/11 || **10/9** || | ||
|| 6 || re || 205.71 || || || || 9/8 || | || 6 || re || 205.71 || || || || **9/8** || | ||
|| 7 || ri || 240 || 8/7 || || 7/6 || || | || 7 || ri || 240 || **8/7** || || 7/6 || || | ||
|| 8 || ma || 274.29 || 20/17 || 7/6 || || || | || 8 || ma || 274.29 || **20/17** || **7/6** || || || | ||
|| 9 || me || 308.57 || || 6/5 || || || | || 9 || me || 308.57 || || **6/5** || || || | ||
|| 10 || mu || 342.86 || 17/14 || || 6/5 || 11/9 || | || 10 || mu || 342.86 || **17/14** || || 6/5 || **11/9** || | ||
|| 11 || mi || 377.14 || 5/4 || || || || | || 11 || mi || 377.14 || **5/4** || || || || | ||
|| 12 || mo || 411.43 || 14/11 || || || || | || 12 || mo || 411.43 || **14/11** || || || || | ||
|| 13 || fe || 445.71 || 22/17 || || || 9/7 || | || 13 || fe || 445.71 || **22/17**, 32/25 || || || **9/7** || | ||
|| 14 || fo || 480 || || || 4/3 || || | || 14 || fo || 480 || || || 4/3 || || | ||
|| 15 || fa | || 15 || fa || 514.29 || || **4/3** || || || | ||
|| 16 || fu || 548.57 || 11/8 || || || || | || 16 || fu || 548.57 || **11/8** || || || || | ||
|| 17 || fi || 582.86 || 7/5 || 24/17 || 17/12 || || | || 17 || fi || 582.86 || **7/5** || **24/17** || 17/12 || || | ||
|| 18 || se || 617.14 || 10/7 || 17/12 || 24/17 || || | || 18 || se || 617.14 || **10/7** || **17/12** || 24/17 || || | ||
|| 19 || su || 651.43 || 16/11 || || || || | || 19 || su || 651.43 || **16/11** || || || || | ||
|| 20 || | || 20 || so || 685.71 || || **3/2** || || || | ||
|| 21 || | || 21 || sa || 720 || || || 3/2 || || | ||
|| 22 || si || 754.29 || 17/11, 25/16 || || || 14/9 || | || 22 || si || 754.29 || **17/11**, 25/16 || || || **14/9** || | ||
|| 23 || lo || 788.57 || 11/7 || || || || | || 23 || lo || 788.57 || **11/7** || || || || | ||
|| 24 || le || 822.86 || 8/5 || || || || | || 24 || le || 822.86 || **8/5** || || || || | ||
|| 25 || lu || 857.15 || || || 5/3 || 18/11 || | || 25 || lu || 857.15 || || || 5/3 || **18/11** || | ||
|| 26 || la || 891.43 || || 5/3 || || || | || 26 || la || 891.43 || || **5/3** || || || | ||
|| 27 || li || 925.71 || 17/10 || 12/7 || || || | || 27 || li || 925.71 || **17/10** || **12/7** || || || | ||
|| 28 || ta || 960 || 7/4 || || || || | || 28 || ta || 960 || **7/4** || || || || | ||
|| 29 || te || 994.29 || || || || 16/9 || | || 29 || te || 994.29 || || || || **16/9** || | ||
|| 30 || to || 1028.57 || 20/11 || || || 9/5 || | || 30 || to || 1028.57 || **20/11** || || || **9/5** || | ||
|| 31 || tu || 1062.86 || || 11/6, 15/8 || || || | || 31 || tu || 1062.86 || || **11/6**, 15/8 || || || | ||
|| 32 || ti || 1097.14 || 32/17 || || 15/8 || 17/9 || | || 32 || ti || 1097.14 || **32/17** || || **15/8** || **17/9** || | ||
|| 33 || de || 1131.43 || || || || || | || 33 || de || 1131.43 || || || || || | ||
|| 34 || da || 1165.71 || || || || || | || 34 || da || 1165.71 || || || || || | ||
Line 56: | Line 56: | ||
||~ Periods | ||~ Periods | ||
per octave ||~ Generator ||~ Temperaments with | per octave ||~ Generator ||~ Temperaments with | ||
flat 3/2 (patent val) ||~ <span style="display: block; text-align: center;">Temperaments with</span> | flat 3/2 (patent val) ||~ <span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span> || | ||
<span style="display: block; text-align: center;">sharp 3/2 (35b val)</span> || | |||
|| 1 || 1\35 || || || | || 1 || 1\35 || || || | ||
|| 1 || 2\35 || || || | || 1 || 2\35 || || || | ||
Line 70: | Line 69: | ||
|| 1 || 16\35 || || || | || 1 || 16\35 || || || | ||
|| 1 || 17\35 || || || | || 1 || 17\35 || || || | ||
|| 5 || 1\35 || || [[Blackwood]] (very unfair, | || 5 || 1\35 || || [[Blackwood]] (very unfair, favoring 7/6) || | ||
|| 5 || 2\35 || || [[Blackwood]] (unfair, favoring 6/5) || | || 5 || 2\35 || || [[Blackwood]] (unfair, favoring 6/5 and 20/17) || | ||
|| 5 || 3\35 || || [[Blackwood]] (fair, favoring 5/4) || | || 5 || 3\35 || || [[Blackwood]] (fair, favoring 5/4 and 17/14) || | ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] || || | || 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] || || | ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] || || | || 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] || || | ||
Line 98: | Line 97: | ||
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br /> | more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br /> | ||
<br /> | <br /> | ||
A good | A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1> | ||
<br /> | <br /> | ||
<br /> | (Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)<br /> | ||
Line 129: | Line 128: | ||
<td>0<br /> | <td>0<br /> | ||
</td> | </td> | ||
<td>1/1<br /> | <td><strong>1/1</strong><br /> | ||
</td> | </td> | ||
<td>(see comma table)<br /> | <td>(see comma table)<br /> | ||
Line 145: | Line 144: | ||
<td>34.29<br /> | <td>34.29<br /> | ||
</td> | </td> | ||
<td>50/49, 121/119<br /> | <td><strong>50/49</strong>, <strong>121/119</strong>, 33/32<br /> | ||
</td> | </td> | ||
<td>36/35<br /> | <td><strong>36/35</strong><br /> | ||
</td> | </td> | ||
<td>25/24<br /> | <td>25/24<br /> | ||
</td> | </td> | ||
<td>81/80<br /> | <td><strong>81/80</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 163: | Line 162: | ||
<td>128/125<br /> | <td>128/125<br /> | ||
</td> | </td> | ||
<td>25/24<br /> | <td><strong>25/24</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 177: | Line 176: | ||
<td>102.86<br /> | <td>102.86<br /> | ||
</td> | </td> | ||
<td>17/16<br /> | <td><strong>17/16</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>16/15<br /> | <td><strong>16/15</strong><br /> | ||
</td> | </td> | ||
<td>18/17<br /> | <td><strong>18/17</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 195: | Line 194: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>12/11, 16/15<br /> | <td><strong>12/11</strong>, 16/15<br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 209: | Line 208: | ||
<td>171.43<br /> | <td>171.43<br /> | ||
</td> | </td> | ||
<td>11/10<br /> | <td><strong>11/10</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 215: | Line 214: | ||
<td>12/11<br /> | <td>12/11<br /> | ||
</td> | </td> | ||
<td>10/9<br /> | <td><strong>10/9</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 231: | Line 230: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>9/8<br /> | <td><strong>9/8</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 241: | Line 240: | ||
<td>240<br /> | <td>240<br /> | ||
</td> | </td> | ||
<td>8/7<br /> | <td><strong>8/7</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 257: | Line 256: | ||
<td>274.29<br /> | <td>274.29<br /> | ||
</td> | </td> | ||
<td>20/17<br /> | <td><strong>20/17</strong><br /> | ||
</td> | </td> | ||
<td>7/6<br /> | <td><strong>7/6</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 275: | Line 274: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>6/5<br /> | <td><strong>6/5</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 289: | Line 288: | ||
<td>342.86<br /> | <td>342.86<br /> | ||
</td> | </td> | ||
<td>17/14<br /> | <td><strong>17/14</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 295: | Line 294: | ||
<td>6/5<br /> | <td>6/5<br /> | ||
</td> | </td> | ||
<td>11/9<br /> | <td><strong>11/9</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 305: | Line 304: | ||
<td>377.14<br /> | <td>377.14<br /> | ||
</td> | </td> | ||
<td>5/4<br /> | <td><strong>5/4</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 321: | Line 320: | ||
<td>411.43<br /> | <td>411.43<br /> | ||
</td> | </td> | ||
<td>14/11<br /> | <td><strong>14/11</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 337: | Line 336: | ||
<td>445.71<br /> | <td>445.71<br /> | ||
</td> | </td> | ||
<td>22/17<br /> | <td><strong>22/17</strong>, 32/25<br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 343: | Line 342: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>9/7<br /> | <td><strong>9/7</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 365: | Line 364: | ||
<td>15<br /> | <td>15<br /> | ||
</td> | </td> | ||
<td>fa | <td>fa<br /> | ||
</td> | </td> | ||
<td>514.29<br /> | <td>514.29<br /> | ||
Line 371: | Line 370: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>4/3<br /> | <td><strong>4/3</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 385: | Line 384: | ||
<td>548.57<br /> | <td>548.57<br /> | ||
</td> | </td> | ||
<td>11/8<br /> | <td><strong>11/8</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 401: | Line 400: | ||
<td>582.86<br /> | <td>582.86<br /> | ||
</td> | </td> | ||
<td>7/5<br /> | <td><strong>7/5</strong><br /> | ||
</td> | </td> | ||
<td>24/17<br /> | <td><strong>24/17</strong><br /> | ||
</td> | </td> | ||
<td>17/12<br /> | <td>17/12<br /> | ||
Line 417: | Line 416: | ||
<td>617.14<br /> | <td>617.14<br /> | ||
</td> | </td> | ||
<td>10/7<br /> | <td><strong>10/7</strong><br /> | ||
</td> | </td> | ||
<td>17/12<br /> | <td><strong>17/12</strong><br /> | ||
</td> | </td> | ||
<td>24/17<br /> | <td>24/17<br /> | ||
Line 433: | Line 432: | ||
<td>651.43<br /> | <td>651.43<br /> | ||
</td> | </td> | ||
<td>16/11<br /> | <td><strong>16/11</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 445: | Line 444: | ||
<td>20<br /> | <td>20<br /> | ||
</td> | </td> | ||
<td> | <td>so<br /> | ||
</td> | </td> | ||
<td>685.71<br /> | <td>685.71<br /> | ||
Line 451: | Line 450: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>3/2<br /> | <td><strong>3/2</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 461: | Line 460: | ||
<td>21<br /> | <td>21<br /> | ||
</td> | </td> | ||
<td> | <td>sa<br /> | ||
</td> | </td> | ||
<td>720<br /> | <td>720<br /> | ||
Line 481: | Line 480: | ||
<td>754.29<br /> | <td>754.29<br /> | ||
</td> | </td> | ||
<td>17/11, 25/16<br /> | <td><strong>17/11</strong>, 25/16<br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 487: | Line 486: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>14/9<br /> | <td><strong>14/9</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 497: | Line 496: | ||
<td>788.57<br /> | <td>788.57<br /> | ||
</td> | </td> | ||
<td>11/7<br /> | <td><strong>11/7</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 513: | Line 512: | ||
<td>822.86<br /> | <td>822.86<br /> | ||
</td> | </td> | ||
<td>8/5<br /> | <td><strong>8/5</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 535: | Line 534: | ||
<td>5/3<br /> | <td>5/3<br /> | ||
</td> | </td> | ||
<td>18/11<br /> | <td><strong>18/11</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 547: | Line 546: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>5/3<br /> | <td><strong>5/3</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 561: | Line 560: | ||
<td>925.71<br /> | <td>925.71<br /> | ||
</td> | </td> | ||
<td>17/10<br /> | <td><strong>17/10</strong><br /> | ||
</td> | </td> | ||
<td>12/7<br /> | <td><strong>12/7</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 577: | Line 576: | ||
<td>960<br /> | <td>960<br /> | ||
</td> | </td> | ||
<td>7/4<br /> | <td><strong>7/4</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 599: | Line 598: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>16/9<br /> | <td><strong>16/9</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 609: | Line 608: | ||
<td>1028.57<br /> | <td>1028.57<br /> | ||
</td> | </td> | ||
<td>20/11<br /> | <td><strong>20/11</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 615: | Line 614: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>9/5<br /> | <td><strong>9/5</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 627: | Line 626: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>11/6, 15/8<br /> | <td><strong>11/6</strong>, 15/8<br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 641: | Line 640: | ||
<td>1097.14<br /> | <td>1097.14<br /> | ||
</td> | </td> | ||
<td>32/17<br /> | <td><strong>32/17</strong><br /> | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td>15/8<br /> | <td><strong>15/8</strong><br /> | ||
</td> | </td> | ||
<td>17/9<br /> | <td><strong>17/9</strong><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 698: | Line 697: | ||
flat 3/2 (patent val)<br /> | flat 3/2 (patent val)<br /> | ||
</th> | </th> | ||
<th><span style="display: block; text-align: center;">Temperaments with</span> | <th><span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span><br /> | ||
<span style="display: block; text-align: center;">sharp 3/2 (35b val)</span><br /> | |||
</th> | </th> | ||
</tr> | </tr> | ||
Line 827: | Line 825: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Blackwood">Blackwood</a> (very unfair, | <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (very unfair, favoring 7/6)<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 837: | Line 835: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Blackwood">Blackwood</a> (unfair, favoring 6/5)<br /> | <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (unfair, favoring 6/5 and 20/17)<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 847: | Line 845: | ||
<td><br /> | <td><br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Blackwood">Blackwood</a> (fair, favoring 5/4)<br /> | <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (fair, favoring 5/4 and 17/14)<br /> | ||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 08:50, 6 May 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author phylingual and made on 2012-05-06 08:50:45 UTC.
- The original revision id was 330635360.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each. As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments. A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4. =Intervals= (Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.) || Degrees || Solfege || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with sharp 3 || Ratios with 9 || || 0 || do || 0 || **1/1** || (see comma table) || || || || 1 || du || 34.29 || **50/49**, **121/119**, 33/32 || **36/35** || 25/24 || **81/80** || || 2 || di || 68.57 || 128/125 || **25/24** || || || || 3 || ra || 102.86 || **17/16** || || **16/15** || **18/17** || || 4 || ru || 137.14 || || **12/11**, 16/15 || || || || 5 || ro || 171.43 || **11/10** || || 12/11 || **10/9** || || 6 || re || 205.71 || || || || **9/8** || || 7 || ri || 240 || **8/7** || || 7/6 || || || 8 || ma || 274.29 || **20/17** || **7/6** || || || || 9 || me || 308.57 || || **6/5** || || || || 10 || mu || 342.86 || **17/14** || || 6/5 || **11/9** || || 11 || mi || 377.14 || **5/4** || || || || || 12 || mo || 411.43 || **14/11** || || || || || 13 || fe || 445.71 || **22/17**, 32/25 || || || **9/7** || || 14 || fo || 480 || || || 4/3 || || || 15 || fa || 514.29 || || **4/3** || || || || 16 || fu || 548.57 || **11/8** || || || || || 17 || fi || 582.86 || **7/5** || **24/17** || 17/12 || || || 18 || se || 617.14 || **10/7** || **17/12** || 24/17 || || || 19 || su || 651.43 || **16/11** || || || || || 20 || so || 685.71 || || **3/2** || || || || 21 || sa || 720 || || || 3/2 || || || 22 || si || 754.29 || **17/11**, 25/16 || || || **14/9** || || 23 || lo || 788.57 || **11/7** || || || || || 24 || le || 822.86 || **8/5** || || || || || 25 || lu || 857.15 || || || 5/3 || **18/11** || || 26 || la || 891.43 || || **5/3** || || || || 27 || li || 925.71 || **17/10** || **12/7** || || || || 28 || ta || 960 || **7/4** || || || || || 29 || te || 994.29 || || || || **16/9** || || 30 || to || 1028.57 || **20/11** || || || **9/5** || || 31 || tu || 1062.86 || || **11/6**, 15/8 || || || || 32 || ti || 1097.14 || **32/17** || || **15/8** || **17/9** || || 33 || de || 1131.43 || || || || || || 34 || da || 1165.71 || || || || || =Rank two temperaments= ||~ Periods per octave ||~ Generator ||~ Temperaments with flat 3/2 (patent val) ||~ <span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span> || || 1 || 1\35 || || || || 1 || 2\35 || || || || 1 || 3\35 || || [[Ripple]] || || 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] || || || 1 || 6\35 |||| Messed-up [[Chromatic pairs#Baldy|Baldy]] || || 1 || 8\35 || || Messed-up [[Orwell]] || || 1 || 9\35 || [[xenharmonic/Myna|Myna]] || || || 1 || 11\35 || [[Magic family#Muggles|Muggles]] || || || 1 || 12\35 || || [[Avicennmic temperaments#Roman|Roman]] || || 1 || 13\35 || || [[xenharmonic/Sensipent family|Sensipent]] but //not// [[Sensi]] || || 1 || 16\35 || || || || 1 || 17\35 || || || || 5 || 1\35 || || [[Blackwood]] (very unfair, favoring 7/6) || || 5 || 2\35 || || [[Blackwood]] (unfair, favoring 6/5 and 20/17) || || 5 || 3\35 || || [[Blackwood]] (fair, favoring 5/4 and 17/14) || || 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] || || || 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] || || ==<span style="background-color: #ffffff;">Commas</span>== 35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.) ||~ **Comma** ||~ **Monzo** ||~ **Value (Cents)** ||~ **Name 1** ||~ **Name 2** ||~ **Name 3** || ||= 2187/2048 || | -11 7 > ||> 113.69 ||= Apotome ||= Whitewood comma || || ||= 6561/6250 || | -1 8 -5 > ||> 84.07 ||= Ripple comma ||= || || ||= 10077696/9765625 || | 9 9 -10 > ||> 54.46 ||= Mynic comma ||= || || ||= 3125/3072 || | -10 -1 5 > ||> 29.61 ||= Small diesis ||= Magic comma || || ||= 78732/78125 || | 2 9 -7 > ||> 13.40 ||= Medium semicomma ||= Sensipent comma || || ||= 405/392 || | -3 4 1 -2 > ||> 56.48 ||= Greenwoodma ||= || || ||= 16807/16384 || | -14 0 0 5 > ||> 44.13 ||= ||= || || ||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= || || ||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma || || ||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||= || || ||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||= ||= || || == == == ==
Original HTML content:
<html><head><title>35edo</title></head><body>35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br /> <br /> As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s<br /> more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br /> <br /> A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1> <br /> (Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)<br /> <table class="wiki_table"> <tr> <td>Degrees<br /> </td> <td>Solfege<br /> </td> <td>Cents value<br /> </td> <td>Ratios in 2.5.7.11.17 subgroup<br /> </td> <td>Ratios with flat 3<br /> </td> <td>Ratios with sharp 3<br /> </td> <td>Ratios with 9<br /> </td> </tr> <tr> <td>0<br /> </td> <td>do<br /> </td> <td>0<br /> </td> <td><strong>1/1</strong><br /> </td> <td>(see comma table)<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>du<br /> </td> <td>34.29<br /> </td> <td><strong>50/49</strong>, <strong>121/119</strong>, 33/32<br /> </td> <td><strong>36/35</strong><br /> </td> <td>25/24<br /> </td> <td><strong>81/80</strong><br /> </td> </tr> <tr> <td>2<br /> </td> <td>di<br /> </td> <td>68.57<br /> </td> <td>128/125<br /> </td> <td><strong>25/24</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>3<br /> </td> <td>ra<br /> </td> <td>102.86<br /> </td> <td><strong>17/16</strong><br /> </td> <td><br /> </td> <td><strong>16/15</strong><br /> </td> <td><strong>18/17</strong><br /> </td> </tr> <tr> <td>4<br /> </td> <td>ru<br /> </td> <td>137.14<br /> </td> <td><br /> </td> <td><strong>12/11</strong>, 16/15<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>ro<br /> </td> <td>171.43<br /> </td> <td><strong>11/10</strong><br /> </td> <td><br /> </td> <td>12/11<br /> </td> <td><strong>10/9</strong><br /> </td> </tr> <tr> <td>6<br /> </td> <td>re<br /> </td> <td>205.71<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/8</strong><br /> </td> </tr> <tr> <td>7<br /> </td> <td>ri<br /> </td> <td>240<br /> </td> <td><strong>8/7</strong><br /> </td> <td><br /> </td> <td>7/6<br /> </td> <td><br /> </td> </tr> <tr> <td>8<br /> </td> <td>ma<br /> </td> <td>274.29<br /> </td> <td><strong>20/17</strong><br /> </td> <td><strong>7/6</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td>me<br /> </td> <td>308.57<br /> </td> <td><br /> </td> <td><strong>6/5</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>10<br /> </td> <td>mu<br /> </td> <td>342.86<br /> </td> <td><strong>17/14</strong><br /> </td> <td><br /> </td> <td>6/5<br /> </td> <td><strong>11/9</strong><br /> </td> </tr> <tr> <td>11<br /> </td> <td>mi<br /> </td> <td>377.14<br /> </td> <td><strong>5/4</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>12<br /> </td> <td>mo<br /> </td> <td>411.43<br /> </td> <td><strong>14/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>13<br /> </td> <td>fe<br /> </td> <td>445.71<br /> </td> <td><strong>22/17</strong>, 32/25<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/7</strong><br /> </td> </tr> <tr> <td>14<br /> </td> <td>fo<br /> </td> <td>480<br /> </td> <td><br /> </td> <td><br /> </td> <td>4/3<br /> </td> <td><br /> </td> </tr> <tr> <td>15<br /> </td> <td>fa<br /> </td> <td>514.29<br /> </td> <td><br /> </td> <td><strong>4/3</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>16<br /> </td> <td>fu<br /> </td> <td>548.57<br /> </td> <td><strong>11/8</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>17<br /> </td> <td>fi<br /> </td> <td>582.86<br /> </td> <td><strong>7/5</strong><br /> </td> <td><strong>24/17</strong><br /> </td> <td>17/12<br /> </td> <td><br /> </td> </tr> <tr> <td>18<br /> </td> <td>se<br /> </td> <td>617.14<br /> </td> <td><strong>10/7</strong><br /> </td> <td><strong>17/12</strong><br /> </td> <td>24/17<br /> </td> <td><br /> </td> </tr> <tr> <td>19<br /> </td> <td>su<br /> </td> <td>651.43<br /> </td> <td><strong>16/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>20<br /> </td> <td>so<br /> </td> <td>685.71<br /> </td> <td><br /> </td> <td><strong>3/2</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>21<br /> </td> <td>sa<br /> </td> <td>720<br /> </td> <td><br /> </td> <td><br /> </td> <td>3/2<br /> </td> <td><br /> </td> </tr> <tr> <td>22<br /> </td> <td>si<br /> </td> <td>754.29<br /> </td> <td><strong>17/11</strong>, 25/16<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>14/9</strong><br /> </td> </tr> <tr> <td>23<br /> </td> <td>lo<br /> </td> <td>788.57<br /> </td> <td><strong>11/7</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>24<br /> </td> <td>le<br /> </td> <td>822.86<br /> </td> <td><strong>8/5</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>25<br /> </td> <td>lu<br /> </td> <td>857.15<br /> </td> <td><br /> </td> <td><br /> </td> <td>5/3<br /> </td> <td><strong>18/11</strong><br /> </td> </tr> <tr> <td>26<br /> </td> <td>la<br /> </td> <td>891.43<br /> </td> <td><br /> </td> <td><strong>5/3</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>27<br /> </td> <td>li<br /> </td> <td>925.71<br /> </td> <td><strong>17/10</strong><br /> </td> <td><strong>12/7</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>28<br /> </td> <td>ta<br /> </td> <td>960<br /> </td> <td><strong>7/4</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>29<br /> </td> <td>te<br /> </td> <td>994.29<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>16/9</strong><br /> </td> </tr> <tr> <td>30<br /> </td> <td>to<br /> </td> <td>1028.57<br /> </td> <td><strong>20/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/5</strong><br /> </td> </tr> <tr> <td>31<br /> </td> <td>tu<br /> </td> <td>1062.86<br /> </td> <td><br /> </td> <td><strong>11/6</strong>, 15/8<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>32<br /> </td> <td>ti<br /> </td> <td>1097.14<br /> </td> <td><strong>32/17</strong><br /> </td> <td><br /> </td> <td><strong>15/8</strong><br /> </td> <td><strong>17/9</strong><br /> </td> </tr> <tr> <td>33<br /> </td> <td>de<br /> </td> <td>1131.43<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>34<br /> </td> <td>da<br /> </td> <td>1165.71<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Rank two temperaments</h1> <br /> <table class="wiki_table"> <tr> <th>Periods<br /> per octave<br /> </th> <th>Generator<br /> </th> <th>Temperaments with<br /> flat 3/2 (patent val)<br /> </th> <th><span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span><br /> </th> </tr> <tr> <td>1<br /> </td> <td>1\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>2\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>3\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Ripple">Ripple</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>4\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">Secund</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>6\35<br /> </td> <td colspan="2">Messed-up <a class="wiki_link" href="/Chromatic%20pairs#Baldy">Baldy</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>8\35<br /> </td> <td><br /> </td> <td>Messed-up <a class="wiki_link" href="/Orwell">Orwell</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>9\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Myna">Myna</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>11\35<br /> </td> <td><a class="wiki_link" href="/Magic%20family#Muggles">Muggles</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>12\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Avicennmic%20temperaments#Roman">Roman</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>13\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sensipent%20family">Sensipent</a> but <em>not</em> <a class="wiki_link" href="/Sensi">Sensi</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>16\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>17\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>1\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (very unfair, favoring 7/6)<br /> </td> </tr> <tr> <td>5<br /> </td> <td>2\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (unfair, favoring 6/5 and 20/17)<br /> </td> </tr> <tr> <td>5<br /> </td> <td>3\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (fair, favoring 5/4 and 17/14)<br /> </td> </tr> <tr> <td>7<br /> </td> <td>1\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood">Redwood</a><br /> </td> <td><br /> </td> </tr> <tr> <td>7<br /> </td> <td>2\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Greenwood">Greenwood</a><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="Rank two temperaments-Commas"></a><!-- ws:end:WikiTextHeadingRule:4 --><span style="background-color: #ffffff;">Commas</span></h2> 35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.)<br /> <table class="wiki_table"> <tr> <th><strong>Comma</strong><br /> </th> <th><strong>Monzo</strong><br /> </th> <th><strong>Value (Cents)</strong><br /> </th> <th><strong>Name 1</strong><br /> </th> <th><strong>Name 2</strong><br /> </th> <th><strong>Name 3</strong><br /> </th> </tr> <tr> <td style="text-align: center;">2187/2048<br /> </td> <td>| -11 7 ><br /> </td> <td style="text-align: right;">113.69<br /> </td> <td style="text-align: center;">Apotome<br /> </td> <td style="text-align: center;">Whitewood comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">6561/6250<br /> </td> <td>| -1 8 -5 ><br /> </td> <td style="text-align: right;">84.07<br /> </td> <td style="text-align: center;">Ripple comma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">10077696/9765625<br /> </td> <td>| 9 9 -10 ><br /> </td> <td style="text-align: right;">54.46<br /> </td> <td style="text-align: center;">Mynic comma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">3125/3072<br /> </td> <td>| -10 -1 5 ><br /> </td> <td style="text-align: right;">29.61<br /> </td> <td style="text-align: center;">Small diesis<br /> </td> <td style="text-align: center;">Magic comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">78732/78125<br /> </td> <td>| 2 9 -7 ><br /> </td> <td style="text-align: right;">13.40<br /> </td> <td style="text-align: center;">Medium semicomma<br /> </td> <td style="text-align: center;">Sensipent comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">405/392<br /> </td> <td>| -3 4 1 -2 ><br /> </td> <td style="text-align: right;">56.48<br /> </td> <td style="text-align: center;">Greenwoodma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">16807/16384<br /> </td> <td>| -14 0 0 5 ><br /> </td> <td style="text-align: right;">44.13<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">525/512<br /> </td> <td>| -9 1 2 1 ><br /> </td> <td style="text-align: right;">43.41<br /> </td> <td style="text-align: center;">Avicennma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">126/125<br /> </td> <td>| 1 2 -3 1 ><br /> </td> <td style="text-align: right;">13.79<br /> </td> <td style="text-align: center;">Starling comma<br /> </td> <td style="text-align: center;">Septimal semicomma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">99/98<br /> </td> <td>| -1 2 0 -2 1 ><br /> </td> <td style="text-align: right;">17.58<br /> </td> <td style="text-align: center;">Mothwellsma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">66/65<br /> </td> <td>| 1 1 -1 0 1 -1 ><br /> </td> <td style="text-align: right;">26.43<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h2> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h2> --><h2 id="toc4"><!-- ws:end:WikiTextHeadingRule:8 --> </h2> </body></html>