35edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>phylingual **Imported revision 330637302 - Original comment: ** |
Wikispaces>phylingual **Imported revision 330638240 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-06 09: | : This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-06 09:12:47 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>330638240</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 88: | Line 88: | ||
||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= || || | ||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= || || | ||
||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma || || | ||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma || || | ||
||= 225/224 || | -5 2 2 -1 > ||> 7.71 ||= Septimal kleisma || || || | |||
||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||= || || | ||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||= || || | ||
||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||= ||= || || | ||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||= ||= || || | ||
Line 1,015: | Line 1,016: | ||
</td> | </td> | ||
<td style="text-align: center;">Septimal semicomma<br /> | <td style="text-align: center;">Septimal semicomma<br /> | ||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td style="text-align: center;">225/224<br /> | |||
</td> | |||
<td>| -5 2 2 -1 &gt;<br /> | |||
</td> | |||
<td style="text-align: right;">7.71<br /> | |||
</td> | |||
<td style="text-align: center;">Septimal kleisma<br /> | |||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> |
Revision as of 09:12, 6 May 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author phylingual and made on 2012-05-06 09:12:47 UTC.
- The original revision id was 330638240.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each. As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments. A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4. =Intervals= (Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.) || Degrees || Solfege || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with sharp 3 || Ratios with 9 || || 0 || do || 0 || **1/1** || (see comma table) || || || || 1 || du || 34.29 || **50/49**, **121/119**, 33/32 || **36/35** || 25/24 || **81/80** || || 2 || di || 68.57 || 128/125 || **25/24** || 81/80 || || || 3 || ra || 102.86 || **17/16** || **15/14** || **16/15** || **18/17** || || 4 || ru || 137.14 || || **12/11**, 16/15 || || || || 5 || ro || 171.43 || **11/10** || || 12/11 || **10/9** || || 6 || re || 205.71 || || || || **9/8** || || 7 || ri || 240 || **8/7** || || 7/6 || || || 8 || ma || 274.29 || **20/17** || **7/6** || || || || 9 || me || 308.57 || || **6/5** || || || || 10 || mu || 342.86 || **17/14** || || 6/5 || **11/9** || || 11 || mi || 377.14 || **5/4** || || || || || 12 || mo || 411.43 || **14/11** || || || || || 13 || fe || 445.71 || **22/17**, 32/25 || || || **9/7** || || 14 || fo || 480 || || || 4/3 || || || 15 || fa || 514.29 || || **4/3** || || || || 16 || fu || 548.57 || **11/8** || || || || || 17 || fi || 582.86 || **7/5** || **24/17** || 17/12 || || || 18 || se || 617.14 || **10/7** || **17/12** || 24/17 || || || 19 || su || 651.43 || **16/11** || || || || || 20 || so || 685.71 || || **3/2** || || || || 21 || sa || 720 || || || 3/2 || || || 22 || si || 754.29 || **17/11**, 25/16 || || || **14/9** || || 23 || lo || 788.57 || **11/7** || || || || || 24 || le || 822.86 || **8/5** || || || || || 25 || lu || 857.15 || || || 5/3 || **18/11** || || 26 || la || 891.43 || || **5/3** || || || || 27 || li || 925.71 || **17/10** || **12/7** || || || || 28 || ta || 960 || **7/4** || || || || || 29 || te || 994.29 || || || || **16/9** || || 30 || to || 1028.57 || **20/11** || || || **9/5** || || 31 || tu || 1062.86 || || **11/6**, 15/8 || || || || 32 || ti || 1097.14 || **32/17** || **28/15** || **15/8** || **17/9** || || 33 || de || 1131.43 || || || || || || 34 || da || 1165.71 || || || || || =Rank two temperaments= ||~ Periods per octave ||~ Generator ||~ Temperaments with flat 3/2 (patent val) ||~ <span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span> || || 1 || 1\35 || || || || 1 || 2\35 || || || || 1 || 3\35 || || [[Ripple]] || || 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] || || || 1 || 6\35 |||| Messed-up [[Chromatic pairs#Baldy|Baldy]] || || 1 || 8\35 || || Messed-up [[Orwell]] || || 1 || 9\35 || [[xenharmonic/Myna|Myna]] || || || 1 || 11\35 || [[Magic family#Muggles|Muggles]] || || || 1 || 12\35 || || [[Avicennmic temperaments#Roman|Roman]] || || 1 || 13\35 || || [[xenharmonic/Sensipent family|Sensipent]] but //not// [[Sensi]] || || 1 || 16\35 || || || || 1 || 17\35 || || || || 5 || 1\35 || || [[Blackwood]] (very unfair, favoring 7/6) || || 5 || 2\35 || || [[Blackwood]] (unfair, favoring 6/5 and 20/17) || || 5 || 3\35 || || [[Blackwood]] (fair, favoring 5/4 and 17/14) || || 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] || || || 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] || || =<span style="background-color: #ffffff;">Scales</span>= == == ==<span style="background-color: #ffffff;">Commas</span>== 35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.) ||~ **Comma** ||~ **Monzo** ||~ **Value (Cents)** ||~ **Name 1** ||~ **Name 2** ||~ **Name 3** || ||= 2187/2048 || | -11 7 > ||> 113.69 ||= Apotome ||= Whitewood comma || || ||= 6561/6250 || | -1 8 -5 > ||> 84.07 ||= Ripple comma ||= || || ||= 10077696/9765625 || | 9 9 -10 > ||> 54.46 ||= Mynic comma ||= || || ||= 3125/3072 || | -10 -1 5 > ||> 29.61 ||= Small diesis ||= Magic comma || || ||= 78732/78125 || | 2 9 -7 > ||> 13.40 ||= Medium semicomma ||= Sensipent comma || || ||= 405/392 || | -3 4 1 -2 > ||> 56.48 ||= Greenwoodma ||= || || ||= 16807/16384 || | -14 0 0 5 > ||> 44.13 ||= ||= || || ||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= || || ||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma || || ||= 225/224 || | -5 2 2 -1 > ||> 7.71 ||= Septimal kleisma || || || ||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||= || || ||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||= ||= || || == == == ==
Original HTML content:
<html><head><title>35edo</title></head><body>35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br /> <br /> As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s<br /> more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br /> <br /> A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1> <br /> (Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)<br /> <table class="wiki_table"> <tr> <td>Degrees<br /> </td> <td>Solfege<br /> </td> <td>Cents value<br /> </td> <td>Ratios in 2.5.7.11.17 subgroup<br /> </td> <td>Ratios with flat 3<br /> </td> <td>Ratios with sharp 3<br /> </td> <td>Ratios with 9<br /> </td> </tr> <tr> <td>0<br /> </td> <td>do<br /> </td> <td>0<br /> </td> <td><strong>1/1</strong><br /> </td> <td>(see comma table)<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>du<br /> </td> <td>34.29<br /> </td> <td><strong>50/49</strong>, <strong>121/119</strong>, 33/32<br /> </td> <td><strong>36/35</strong><br /> </td> <td>25/24<br /> </td> <td><strong>81/80</strong><br /> </td> </tr> <tr> <td>2<br /> </td> <td>di<br /> </td> <td>68.57<br /> </td> <td>128/125<br /> </td> <td><strong>25/24</strong><br /> </td> <td>81/80<br /> </td> <td><br /> </td> </tr> <tr> <td>3<br /> </td> <td>ra<br /> </td> <td>102.86<br /> </td> <td><strong>17/16</strong><br /> </td> <td><strong>15/14</strong><br /> </td> <td><strong>16/15</strong><br /> </td> <td><strong>18/17</strong><br /> </td> </tr> <tr> <td>4<br /> </td> <td>ru<br /> </td> <td>137.14<br /> </td> <td><br /> </td> <td><strong>12/11</strong>, 16/15<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>ro<br /> </td> <td>171.43<br /> </td> <td><strong>11/10</strong><br /> </td> <td><br /> </td> <td>12/11<br /> </td> <td><strong>10/9</strong><br /> </td> </tr> <tr> <td>6<br /> </td> <td>re<br /> </td> <td>205.71<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/8</strong><br /> </td> </tr> <tr> <td>7<br /> </td> <td>ri<br /> </td> <td>240<br /> </td> <td><strong>8/7</strong><br /> </td> <td><br /> </td> <td>7/6<br /> </td> <td><br /> </td> </tr> <tr> <td>8<br /> </td> <td>ma<br /> </td> <td>274.29<br /> </td> <td><strong>20/17</strong><br /> </td> <td><strong>7/6</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td>me<br /> </td> <td>308.57<br /> </td> <td><br /> </td> <td><strong>6/5</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>10<br /> </td> <td>mu<br /> </td> <td>342.86<br /> </td> <td><strong>17/14</strong><br /> </td> <td><br /> </td> <td>6/5<br /> </td> <td><strong>11/9</strong><br /> </td> </tr> <tr> <td>11<br /> </td> <td>mi<br /> </td> <td>377.14<br /> </td> <td><strong>5/4</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>12<br /> </td> <td>mo<br /> </td> <td>411.43<br /> </td> <td><strong>14/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>13<br /> </td> <td>fe<br /> </td> <td>445.71<br /> </td> <td><strong>22/17</strong>, 32/25<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/7</strong><br /> </td> </tr> <tr> <td>14<br /> </td> <td>fo<br /> </td> <td>480<br /> </td> <td><br /> </td> <td><br /> </td> <td>4/3<br /> </td> <td><br /> </td> </tr> <tr> <td>15<br /> </td> <td>fa<br /> </td> <td>514.29<br /> </td> <td><br /> </td> <td><strong>4/3</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>16<br /> </td> <td>fu<br /> </td> <td>548.57<br /> </td> <td><strong>11/8</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>17<br /> </td> <td>fi<br /> </td> <td>582.86<br /> </td> <td><strong>7/5</strong><br /> </td> <td><strong>24/17</strong><br /> </td> <td>17/12<br /> </td> <td><br /> </td> </tr> <tr> <td>18<br /> </td> <td>se<br /> </td> <td>617.14<br /> </td> <td><strong>10/7</strong><br /> </td> <td><strong>17/12</strong><br /> </td> <td>24/17<br /> </td> <td><br /> </td> </tr> <tr> <td>19<br /> </td> <td>su<br /> </td> <td>651.43<br /> </td> <td><strong>16/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>20<br /> </td> <td>so<br /> </td> <td>685.71<br /> </td> <td><br /> </td> <td><strong>3/2</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>21<br /> </td> <td>sa<br /> </td> <td>720<br /> </td> <td><br /> </td> <td><br /> </td> <td>3/2<br /> </td> <td><br /> </td> </tr> <tr> <td>22<br /> </td> <td>si<br /> </td> <td>754.29<br /> </td> <td><strong>17/11</strong>, 25/16<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>14/9</strong><br /> </td> </tr> <tr> <td>23<br /> </td> <td>lo<br /> </td> <td>788.57<br /> </td> <td><strong>11/7</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>24<br /> </td> <td>le<br /> </td> <td>822.86<br /> </td> <td><strong>8/5</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>25<br /> </td> <td>lu<br /> </td> <td>857.15<br /> </td> <td><br /> </td> <td><br /> </td> <td>5/3<br /> </td> <td><strong>18/11</strong><br /> </td> </tr> <tr> <td>26<br /> </td> <td>la<br /> </td> <td>891.43<br /> </td> <td><br /> </td> <td><strong>5/3</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>27<br /> </td> <td>li<br /> </td> <td>925.71<br /> </td> <td><strong>17/10</strong><br /> </td> <td><strong>12/7</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>28<br /> </td> <td>ta<br /> </td> <td>960<br /> </td> <td><strong>7/4</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>29<br /> </td> <td>te<br /> </td> <td>994.29<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>16/9</strong><br /> </td> </tr> <tr> <td>30<br /> </td> <td>to<br /> </td> <td>1028.57<br /> </td> <td><strong>20/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/5</strong><br /> </td> </tr> <tr> <td>31<br /> </td> <td>tu<br /> </td> <td>1062.86<br /> </td> <td><br /> </td> <td><strong>11/6</strong>, 15/8<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>32<br /> </td> <td>ti<br /> </td> <td>1097.14<br /> </td> <td><strong>32/17</strong><br /> </td> <td><strong>28/15</strong><br /> </td> <td><strong>15/8</strong><br /> </td> <td><strong>17/9</strong><br /> </td> </tr> <tr> <td>33<br /> </td> <td>de<br /> </td> <td>1131.43<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>34<br /> </td> <td>da<br /> </td> <td>1165.71<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Rank two temperaments</h1> <br /> <table class="wiki_table"> <tr> <th>Periods<br /> per octave<br /> </th> <th>Generator<br /> </th> <th>Temperaments with<br /> flat 3/2 (patent val)<br /> </th> <th><span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span><br /> </th> </tr> <tr> <td>1<br /> </td> <td>1\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>2\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>3\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Ripple">Ripple</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>4\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">Secund</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>6\35<br /> </td> <td colspan="2">Messed-up <a class="wiki_link" href="/Chromatic%20pairs#Baldy">Baldy</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>8\35<br /> </td> <td><br /> </td> <td>Messed-up <a class="wiki_link" href="/Orwell">Orwell</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>9\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Myna">Myna</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>11\35<br /> </td> <td><a class="wiki_link" href="/Magic%20family#Muggles">Muggles</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>12\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Avicennmic%20temperaments#Roman">Roman</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>13\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sensipent%20family">Sensipent</a> but <em>not</em> <a class="wiki_link" href="/Sensi">Sensi</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>16\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>17\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>1\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (very unfair, favoring 7/6)<br /> </td> </tr> <tr> <td>5<br /> </td> <td>2\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (unfair, favoring 6/5 and 20/17)<br /> </td> </tr> <tr> <td>5<br /> </td> <td>3\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (fair, favoring 5/4 and 17/14)<br /> </td> </tr> <tr> <td>7<br /> </td> <td>1\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood">Redwood</a><br /> </td> <td><br /> </td> </tr> <tr> <td>7<br /> </td> <td>2\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Greenwood">Greenwood</a><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:4 --><span style="background-color: #ffffff;">Scales</span></h1> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h2> <!-- ws:start:WikiTextHeadingRule:8:<h2> --><h2 id="toc4"><a name="Scales-Commas"></a><!-- ws:end:WikiTextHeadingRule:8 --><span style="background-color: #ffffff;">Commas</span></h2> 35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.)<br /> <table class="wiki_table"> <tr> <th><strong>Comma</strong><br /> </th> <th><strong>Monzo</strong><br /> </th> <th><strong>Value (Cents)</strong><br /> </th> <th><strong>Name 1</strong><br /> </th> <th><strong>Name 2</strong><br /> </th> <th><strong>Name 3</strong><br /> </th> </tr> <tr> <td style="text-align: center;">2187/2048<br /> </td> <td>| -11 7 ><br /> </td> <td style="text-align: right;">113.69<br /> </td> <td style="text-align: center;">Apotome<br /> </td> <td style="text-align: center;">Whitewood comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">6561/6250<br /> </td> <td>| -1 8 -5 ><br /> </td> <td style="text-align: right;">84.07<br /> </td> <td style="text-align: center;">Ripple comma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">10077696/9765625<br /> </td> <td>| 9 9 -10 ><br /> </td> <td style="text-align: right;">54.46<br /> </td> <td style="text-align: center;">Mynic comma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">3125/3072<br /> </td> <td>| -10 -1 5 ><br /> </td> <td style="text-align: right;">29.61<br /> </td> <td style="text-align: center;">Small diesis<br /> </td> <td style="text-align: center;">Magic comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">78732/78125<br /> </td> <td>| 2 9 -7 ><br /> </td> <td style="text-align: right;">13.40<br /> </td> <td style="text-align: center;">Medium semicomma<br /> </td> <td style="text-align: center;">Sensipent comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">405/392<br /> </td> <td>| -3 4 1 -2 ><br /> </td> <td style="text-align: right;">56.48<br /> </td> <td style="text-align: center;">Greenwoodma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">16807/16384<br /> </td> <td>| -14 0 0 5 ><br /> </td> <td style="text-align: right;">44.13<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">525/512<br /> </td> <td>| -9 1 2 1 ><br /> </td> <td style="text-align: right;">43.41<br /> </td> <td style="text-align: center;">Avicennma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">126/125<br /> </td> <td>| 1 2 -3 1 ><br /> </td> <td style="text-align: right;">13.79<br /> </td> <td style="text-align: center;">Starling comma<br /> </td> <td style="text-align: center;">Septimal semicomma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">225/224<br /> </td> <td>| -5 2 2 -1 ><br /> </td> <td style="text-align: right;">7.71<br /> </td> <td style="text-align: center;">Septimal kleisma<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">99/98<br /> </td> <td>| -1 2 0 -2 1 ><br /> </td> <td style="text-align: right;">17.58<br /> </td> <td style="text-align: center;">Mothwellsma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">66/65<br /> </td> <td>| 1 1 -1 0 1 -1 ><br /> </td> <td style="text-align: right;">26.43<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:10:<h2> --><h2 id="toc5"><!-- ws:end:WikiTextHeadingRule:10 --> </h2> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h2> --><h2 id="toc6"><!-- ws:end:WikiTextHeadingRule:12 --> </h2> </body></html>