34edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Kosmorsky
**Imported revision 470809634 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 497557896 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Kosmorsky|Kosmorsky]] and made on <tt>2013-11-20 14:09:30 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-03-22 11:18:36 UTC</tt>.<br>
: The original revision id was <tt>470809634</tt>.<br>
: The original revision id was <tt>497557896</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= =  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= =  


34edo divides the octave into 34 equal steps of approximately 35.29412 [[xenharmonic/cent|cent]]s. 34edo contains two [[xenharmonic/17edo|17edo]]'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than [[31edo]], but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to [[22edo]] for pajara temperament. In the 11-limit the 34d val supports pajara, vishnu and würschmidt. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.
34edo divides the octave into 34 equal steps of approximately 35.29412 [[xenharmonic/cent|cent]]s. 34edo contains two [[xenharmonic/17edo|17edo]]'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than [[31edo]], but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to [[22edo]] for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajara, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajara.  On the other hand, the 34d val supports vishnu and würschmidt. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.


===Approximations to Just Intonation===  
===Approximations to Just Intonation===  
Line 113: Line 113:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;34edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;34edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
34edo divides the octave into 34 equal steps of approximately 35.29412 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. 34edo contains two &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo"&gt;17edo&lt;/a&gt;'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; for pajara temperament. In the 11-limit the 34d val supports pajara, vishnu and würschmidt. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.&lt;br /&gt;
34edo divides the octave into 34 equal steps of approximately 35.29412 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. 34edo contains two &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo"&gt;17edo&lt;/a&gt;'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajara, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajara.  On the other hand, the 34d val supports vishnu and würschmidt. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Approximations to Just Intonation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Approximations to Just Intonation&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Approximations to Just Intonation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Approximations to Just Intonation&lt;/h3&gt;

Revision as of 11:18, 22 March 2014

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2014-03-22 11:18:36 UTC.
The original revision id was 497557896.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

= = 

34edo divides the octave into 34 equal steps of approximately 35.29412 [[xenharmonic/cent|cent]]s. 34edo contains two [[xenharmonic/17edo|17edo]]'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than [[31edo]], but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to [[22edo]] for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajara, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajara.  On the other hand, the 34d val supports vishnu and würschmidt. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.

===Approximations to Just Intonation=== 
Like [[xenharmonic/17edo|17edo]], 34edo contains good approximations of just intervals involving 13 and 3 -- specifically, 13/8, 13/12, 13/9 and their inversions -- while failing to closely approximate ratios of 7 or 11.* 34edo adds ratios of 5 into the mix -- including 5/4, 6/5, 9/5, 15/8, 13/10, 15/13, and their inversions -- as well as 17 -- including 17/16, 18/17, 17/12, 17/10, 17/13, 17/15 and their inversions. Since it distinguishes between 9/8 and 10/9 (exaggerating the difference between them, the "syntonic comma" of 81/80, from 21.5 cents to 35.3 cents), it is suitable for 5-limit JI. It is not a [[xenharmonic/meantone|meantone ]]system. In layman's terms while no number of fifths (frequently ratios of ~3:2) land on major or minor thirds, an even number of major or minor thirds, technically will be the same pitch as something, somewhere upon the cycle of seventeen fifths.

//Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.// ([[http://en.wikipedia.org/wiki/34_equal_temperament|Wikipedia]])

*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 20-cent sharpness or flatness of either approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. [[68edo]], double 34, has both these intervals in more perfect form.

===34edo and phi=== 
As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[xenharmonic/MOSScales|Moment of Symmetry]] scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and 140625/140608. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. Yes. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and [[36edo]].

===Rank two temperaments=== 
[[xenharmonic/List of 34edo rank two temperaments by badness|List of 34edo rank two temperaments by badness]]
||~ Periods
per octave ||~ Generator ||~ Cents ||~ Linear temperaments ||
|| 1 || 1\34 || 35.294 ||   ||
||   || 3\34 || 105.882 ||   ||
||   || 5\34 || 176.471 || [[xenharmonic/Tetracot|Tetracot]]/[[xenharmonic/Bunya|Bunya]]/[[xenharmonic/Monkey|Monkey]] ||
||   || 7\34 || 247.059 || [[xenharmonic/Immunity|Immunity]] ||
||   || 9\34 || 317.647 || [[xenharmonic/Hanson|Hanson]]/[[xenharmonic/Keemun|Keemun]] ||
||   || 11\34 || 388.235 || [[xenharmonic/Wuerschmidt|Wuerschmidt]]/[[xenharmonic/Worschmidt|Worschmidt]] ||
||   || 13\34 || 458.824 ||   ||
||   || 15\34 || 529.412 ||   ||
|| 2 || 1\34 || 35.294 ||   ||
||   || 2\34 || 70.588 || [[xenharmonic/Vishnu|Vishnu]] ||
||   || 3\34 || 105.882 || [[xenharmonic/Srutal|Srutal]]/[[xenharmonic/Pajara|Pajara]]/[[xenharmonic/Diaschismic|Diaschismic]] ||
||   || 4\34 || 141.176 || [[xenharmonic/Fifive|Fifive]] ||
||   || 5\34 || 176.471 ||   ||
||   || 6\34 || 211.765 ||   ||
||   || 7\34 || 247.059 ||   ||
||   || 8\34 || 282.353 ||   ||
|| 17 || 1\34 || 35.294 ||   ||
===Intervals:=== 
|| degrees of 34edo || solfege || cents || approx. ratios of
[[tel/2.3.5.13.17|2.3.5.13.17]] [[xenharmonic/subgroup|subgroup]] || additional ratios
of the full [[xenharmonic/17-limit|17-limit]] || pseudo-traditional
notation ||
|| 0 || do || 0.0 || 1/1 ||   || C = B^^ = A## ||
|| 1 || di || 35.294 ||   ||   || C ^ ||
|| 2 || rih || 70.588 ||   ||   || Db = C ^^ = B# ||
|| 3 || ra || 105.882 || 17/16, 18/17, 16/15 || 15/14 || C#v = Db^ ||
|| 4 || ru || 141.176 || 13/12 || 14/13, 12/11 || C# ||
|| 5 || reh || 176.471 || 10/9 || 11/10 || C#^ = Dv ||
|| 6 || re || 211.765 || 9/8, 17/15 || 8/7 || D ||
|| 7 || raw || 247.059 || 15/13 ||   || D^ ||
|| 8 || meh || 282.353 || 20/17, 75/64 || 7/6, 13/11 || Eb ||
|| 9 || me || 317.647 || 6/5 || 17/14 || D#v ||
|| 10 || mu || 352.941 || 16/13 || 11/9 || D# ||
|| 11 || mi || 388.235 || 5/4 ||   ||   ||
|| 12 || maa || 423.529 || 51/40, 32/25 || 14/11, 9/7 || E ||
|| 13 || maw || 458.823 || 13/10, 17/13 || 22/17 || E^ = Fv ||
|| 14 || fa || 494.118 || 4/3 ||   || F ||
|| 15 || fih || 529.412 ||   || 15/11 || F^ = E#v ||
|| 16 || fu || 564.706 || 18/13 || 11/8 || Gb ||
|| 17 || fi/se || 600 || 17/12, 24/17 || 7/5, 10/7 || Gb^ ||
|| 18 || su || 635.294 || 13/9 || 16/11 || F# ||
|| 19 || sih || 670.588 ||   || 22/15 || F#^ ||
|| 20 || sol || 705.882 || 3/2 ||   || G ||
|| 21 || saw || 741.176 || 20/13, 26/17 || 17/11 || G^ ||
|| 22 || leh || 776.471 || 25/16, 80/51 || 14/9 || Ab ||
|| 23 || le || 811.765 || 8/5 ||   || Ab^ ||
|| 24 || lu || 847.059 || 13/8 || 18/11 || G# ||
|| 25 || la || 882.353 || 5/3 || 28/17 || Av ||
|| 26 || laa || 917.647 || 17/10 || 12/7, 22/13 || A ||
|| 27 || law || 952.941 || 26/15 ||   || A^ = Bbv =G## ||
|| 28 || teh || 988.235 || 16/9, 30/17 || 7/4 || Bb ||
|| 29 || te || 1023.529 || 9/5 || 20/11 || Bb^ ||
|| 30 || tu || 1058.823 || 24/13 || 13/7, 11/6 || A# ||
|| 31 || ti || 1094.118 || 32/17, 17/9, 15/8 || 28/15 || A#^ = Bv ||
|| 32 || taa || 1129.412 ||   ||   || B ||
|| 33 || da || 1164.706 ||   ||   || B^ = A##v ||
==<span style="background-color: #ffffff;">Notations</span>== 
The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away - the double-sharp adds up to a minor third away. This has led certain complainers, aiming to notate 17 edo (which is relatively popular), to want an extra character to raise something a small step of which. The 34 tone equal temperament, however, can be constructed from two equally spaced 17-note scales: a symbol indicating an adjustment of 1/34 up or down also serves the purpose of the previous sentence, by using two of it. This systemology of course emphasizes certain aspects of 34-edo which may not be most efficient expressions of some musical purposes: The reader can easily construct his own notation. One concern is that a system with 15 nominals for example, instead of seven, might be waste - of paper, space, brainmemory etc. if they aren't used consecutively and frequently. The system spelled out here has familiarity as an advantage or disadvantage. Tangentially, while the table uses ^ and v for "up" and "down", Kosmorosky prefers using filled in triangles because that's what I decided on years ago, and to reserve /\ and \/ as adjustments by 1/68 octave.

==<span style="background-color: #ffffff;">Commas</span>== 
<span style="background-color: #ffffff;">34-EDO [[xenharmonic/tempering out|tempers out]] the following [[xenharmonic/comma|comma]]s. (Note: This assumes the [[xenharmonic/val|val]] < [[tel/34 54 79 95 118 126|34 54 79 95 118 126]] |.)</span>
||~ <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">**Comma**</span></span> ||~ <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">**Monzo**</span></span> ||~ <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">**Value (Cents)**</span></span> ||~ <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">**Name 1**</span></span> ||~ <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">**Name 2**</span></span> ||~ <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">**Name 3**</span></span> ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">134217728/129140163</span></span> || | 27 -17 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">66.765</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">17-comma</span></span> ||   ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">20000/19683</span></span> || | 5 -9 4 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">27.660</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Minimal Diesis</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Tetracot Comma</span></span> ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">2048/2025</span></span> || | 11 -4 -2 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">19.553</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Diaschisma</span></span> ||   ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">393216/390625</span></span> || | 17 1 -8 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">11.445</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Würschmidt comma</span></span> ||   ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">15625/15552</span></span> || | -6 -5 6 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">8.1073</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Kleisma</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Semicomma Majeur</span></span> ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">1212717/1210381</span></span> || | 23 6 -14 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">3.338</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Vishnuzma</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Semisuper</span></span> ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">1029/1000</span></span> || | -3 1 -3 3 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">49.492</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Keega</span></span> ||   ||   ||
|| <span style="display: block; text-align: center;"><span style="color: blue; display: block; text-align: center;">[[xenharmonic/49_48|49/48]]</span>
</span> || | -4 -1 0 2 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">35.697</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Slendro Diesis</span></span> ||   ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">875/864</span></span> || | -5 -3 3 1 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">21.902</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Keema</span></span> ||   ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">126/125</span></span> || | 1 2 -3 1 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">13.795</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Starling comma</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Septimal semicomma</span></span> ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">100/99</span></span> || | 2 -2 2 0 -1> || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">17.399</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Ptolemisma</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Ptolemy's comma</span></span> ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">243/242</span></span> || | -1 5 0 0 -2 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">7.1391</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Rastma</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Neutral third comma</span></span> ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">385/384</span></span> || | -7 -1 1 1 1 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">4.5026</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Keenanisma</span></span> ||   ||   ||
|| <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">91/90</span></span> || | -1 -2 -1 1 0 1 > || <span style="display: block; text-align: right;"><span style="display: block; text-align: right;">19.120</span></span> || <span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Superleap</span></span> ||   ||   ||


==Listen== 
* [[@http://www.archive.org/details/Ascension_105|Ascension]]
* [[@https://www.youtube.com/watch?v=FXTM0HeuExk|Uncomfortable In Crowds (extended)]] by Robin Perry
==Links== 
* [[http://www.microstick.net/34guitararticle.htm|34 Equal Guitar]] by [[xenharmonic/Larry Hanson|Larry Hanson]]
* [[https://microstick.net|http://microstick.net/]] websites of Neil Haverstick
* [[https://myspace.com/microstick]]

Original HTML content:

<html><head><title>34edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><!-- ws:end:WikiTextHeadingRule:0 --> </h1>
 <br />
34edo divides the octave into 34 equal steps of approximately 35.29412 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. 34edo contains two <a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo">17edo</a>'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than <a class="wiki_link" href="/31edo">31edo</a>, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to <a class="wiki_link" href="/22edo">22edo</a> for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajara, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajara.  On the other hand, the 34d val supports vishnu and würschmidt. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x--Approximations to Just Intonation"></a><!-- ws:end:WikiTextHeadingRule:2 -->Approximations to Just Intonation</h3>
 Like <a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo">17edo</a>, 34edo contains good approximations of just intervals involving 13 and 3 -- specifically, 13/8, 13/12, 13/9 and their inversions -- while failing to closely approximate ratios of 7 or 11.* 34edo adds ratios of 5 into the mix -- including 5/4, 6/5, 9/5, 15/8, 13/10, 15/13, and their inversions -- as well as 17 -- including 17/16, 18/17, 17/12, 17/10, 17/13, 17/15 and their inversions. Since it distinguishes between 9/8 and 10/9 (exaggerating the difference between them, the &quot;syntonic comma&quot; of 81/80, from 21.5 cents to 35.3 cents), it is suitable for 5-limit JI. It is not a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/meantone">meantone </a>system. In layman's terms while no number of fifths (frequently ratios of ~3:2) land on major or minor thirds, an even number of major or minor thirds, technically will be the same pitch as something, somewhere upon the cycle of seventeen fifths.<br />
<br />
<em>Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.</em> (<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/34_equal_temperament" rel="nofollow">Wikipedia</a>)<br />
<br />
*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 20-cent sharpness or flatness of either approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. <a class="wiki_link" href="/68edo">68edo</a>, double 34, has both these intervals in more perfect form.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h3&gt; --><h3 id="toc2"><a name="x--34edo and phi"></a><!-- ws:end:WikiTextHeadingRule:4 -->34edo and phi</h3>
 As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">Moment of Symmetry</a> scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and 140625/140608. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. Yes. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and <a class="wiki_link" href="/36edo">36edo</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h3&gt; --><h3 id="toc3"><a name="x--Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:6 -->Rank two temperaments</h3>
 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/List%20of%2034edo%20rank%20two%20temperaments%20by%20badness">List of 34edo rank two temperaments by badness</a><br />


<table class="wiki_table">
    <tr>
        <th>Periods<br />
per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Cents<br />
</th>
        <th>Linear temperaments<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\34<br />
</td>
        <td>35.294<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>3\34<br />
</td>
        <td>105.882<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>5\34<br />
</td>
        <td>176.471<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Tetracot">Tetracot</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Bunya">Bunya</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Monkey">Monkey</a><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>7\34<br />
</td>
        <td>247.059<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Immunity">Immunity</a><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>9\34<br />
</td>
        <td>317.647<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Hanson">Hanson</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Keemun">Keemun</a><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>11\34<br />
</td>
        <td>388.235<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Wuerschmidt">Wuerschmidt</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Worschmidt">Worschmidt</a><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>13\34<br />
</td>
        <td>458.824<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>15\34<br />
</td>
        <td>529.412<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1\34<br />
</td>
        <td>35.294<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2\34<br />
</td>
        <td>70.588<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Vishnu">Vishnu</a><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>3\34<br />
</td>
        <td>105.882<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Srutal">Srutal</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Pajara">Pajara</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Diaschismic">Diaschismic</a><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>4\34<br />
</td>
        <td>141.176<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Fifive">Fifive</a><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>5\34<br />
</td>
        <td>176.471<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>6\34<br />
</td>
        <td>211.765<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>7\34<br />
</td>
        <td>247.059<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>8\34<br />
</td>
        <td>282.353<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>1\34<br />
</td>
        <td>35.294<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:8:&lt;h3&gt; --><h3 id="toc4"><a name="x--Intervals:"></a><!-- ws:end:WikiTextHeadingRule:8 -->Intervals:</h3>
 

<table class="wiki_table">
    <tr>
        <td>degrees of 34edo<br />
</td>
        <td>solfege<br />
</td>
        <td>cents<br />
</td>
        <td>approx. ratios of<br />
<a class="wiki_link" href="http://tel.wikispaces.com/2.3.5.13.17">2.3.5.13.17</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/subgroup">subgroup</a><br />
</td>
        <td>additional ratios<br />
of the full <a class="wiki_link" href="http://xenharmonic.wikispaces.com/17-limit">17-limit</a><br />
</td>
        <td>pseudo-traditional<br />
notation<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>do<br />
</td>
        <td>0.0<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td>C = B^^ = A##<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>di<br />
</td>
        <td>35.294<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>C ^<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>rih<br />
</td>
        <td>70.588<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>Db = C ^^ = B#<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>ra<br />
</td>
        <td>105.882<br />
</td>
        <td>17/16, 18/17, 16/15<br />
</td>
        <td>15/14<br />
</td>
        <td>C#v = Db^<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>ru<br />
</td>
        <td>141.176<br />
</td>
        <td>13/12<br />
</td>
        <td>14/13, 12/11<br />
</td>
        <td>C#<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>reh<br />
</td>
        <td>176.471<br />
</td>
        <td>10/9<br />
</td>
        <td>11/10<br />
</td>
        <td>C#^ = Dv<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>re<br />
</td>
        <td>211.765<br />
</td>
        <td>9/8, 17/15<br />
</td>
        <td>8/7<br />
</td>
        <td>D<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>raw<br />
</td>
        <td>247.059<br />
</td>
        <td>15/13<br />
</td>
        <td><br />
</td>
        <td>D^<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>meh<br />
</td>
        <td>282.353<br />
</td>
        <td>20/17, 75/64<br />
</td>
        <td>7/6, 13/11<br />
</td>
        <td>Eb<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>me<br />
</td>
        <td>317.647<br />
</td>
        <td>6/5<br />
</td>
        <td>17/14<br />
</td>
        <td>D#v<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>mu<br />
</td>
        <td>352.941<br />
</td>
        <td>16/13<br />
</td>
        <td>11/9<br />
</td>
        <td>D#<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>mi<br />
</td>
        <td>388.235<br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>maa<br />
</td>
        <td>423.529<br />
</td>
        <td>51/40, 32/25<br />
</td>
        <td>14/11, 9/7<br />
</td>
        <td>E<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>maw<br />
</td>
        <td>458.823<br />
</td>
        <td>13/10, 17/13<br />
</td>
        <td>22/17<br />
</td>
        <td>E^ = Fv<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>fa<br />
</td>
        <td>494.118<br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
        <td>F<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>fih<br />
</td>
        <td>529.412<br />
</td>
        <td><br />
</td>
        <td>15/11<br />
</td>
        <td>F^ = E#v<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>fu<br />
</td>
        <td>564.706<br />
</td>
        <td>18/13<br />
</td>
        <td>11/8<br />
</td>
        <td>Gb<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>fi/se<br />
</td>
        <td>600<br />
</td>
        <td>17/12, 24/17<br />
</td>
        <td>7/5, 10/7<br />
</td>
        <td>Gb^<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>su<br />
</td>
        <td>635.294<br />
</td>
        <td>13/9<br />
</td>
        <td>16/11<br />
</td>
        <td>F#<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>sih<br />
</td>
        <td>670.588<br />
</td>
        <td><br />
</td>
        <td>22/15<br />
</td>
        <td>F#^<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>sol<br />
</td>
        <td>705.882<br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
        <td>G<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>saw<br />
</td>
        <td>741.176<br />
</td>
        <td>20/13, 26/17<br />
</td>
        <td>17/11<br />
</td>
        <td>G^<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>leh<br />
</td>
        <td>776.471<br />
</td>
        <td>25/16, 80/51<br />
</td>
        <td>14/9<br />
</td>
        <td>Ab<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>le<br />
</td>
        <td>811.765<br />
</td>
        <td>8/5<br />
</td>
        <td><br />
</td>
        <td>Ab^<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>lu<br />
</td>
        <td>847.059<br />
</td>
        <td>13/8<br />
</td>
        <td>18/11<br />
</td>
        <td>G#<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>la<br />
</td>
        <td>882.353<br />
</td>
        <td>5/3<br />
</td>
        <td>28/17<br />
</td>
        <td>Av<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>laa<br />
</td>
        <td>917.647<br />
</td>
        <td>17/10<br />
</td>
        <td>12/7, 22/13<br />
</td>
        <td>A<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>law<br />
</td>
        <td>952.941<br />
</td>
        <td>26/15<br />
</td>
        <td><br />
</td>
        <td>A^ = Bbv =G##<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>teh<br />
</td>
        <td>988.235<br />
</td>
        <td>16/9, 30/17<br />
</td>
        <td>7/4<br />
</td>
        <td>Bb<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>te<br />
</td>
        <td>1023.529<br />
</td>
        <td>9/5<br />
</td>
        <td>20/11<br />
</td>
        <td>Bb^<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>tu<br />
</td>
        <td>1058.823<br />
</td>
        <td>24/13<br />
</td>
        <td>13/7, 11/6<br />
</td>
        <td>A#<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>ti<br />
</td>
        <td>1094.118<br />
</td>
        <td>32/17, 17/9, 15/8<br />
</td>
        <td>28/15<br />
</td>
        <td>A#^ = Bv<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>taa<br />
</td>
        <td>1129.412<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>B<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>da<br />
</td>
        <td>1164.706<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>B^ = A##v<br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x-Notations"></a><!-- ws:end:WikiTextHeadingRule:10 --><span style="background-color: #ffffff;">Notations</span></h2>
 The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away - the double-sharp adds up to a minor third away. This has led certain complainers, aiming to notate 17 edo (which is relatively popular), to want an extra character to raise something a small step of which. The 34 tone equal temperament, however, can be constructed from two equally spaced 17-note scales: a symbol indicating an adjustment of 1/34 up or down also serves the purpose of the previous sentence, by using two of it. This systemology of course emphasizes certain aspects of 34-edo which may not be most efficient expressions of some musical purposes: The reader can easily construct his own notation. One concern is that a system with 15 nominals for example, instead of seven, might be waste - of paper, space, brainmemory etc. if they aren't used consecutively and frequently. The system spelled out here has familiarity as an advantage or disadvantage. Tangentially, while the table uses ^ and v for &quot;up&quot; and &quot;down&quot;, Kosmorosky prefers using filled in triangles because that's what I decided on years ago, and to reserve /\ and \/ as adjustments by 1/68 octave.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="x-Commas"></a><!-- ws:end:WikiTextHeadingRule:12 --><span style="background-color: #ffffff;">Commas</span></h2>
 <span style="background-color: #ffffff;">34-EDO <a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out">tempers out</a> the following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/comma">comma</a>s. (Note: This assumes the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/val">val</a> &lt; <a class="wiki_link" href="http://tel.wikispaces.com/34%2054%2079%2095%20118%20126">34 54 79 95 118 126</a> |.)</span><br />


<table class="wiki_table">
    <tr>
        <th><span style="display: block; text-align: center;"><span style="display: block; text-align: center;"><strong>Comma</strong></span></span><br />
</th>
        <th><span style="display: block; text-align: center;"><span style="display: block; text-align: center;"><strong>Monzo</strong></span></span><br />
</th>
        <th><span style="display: block; text-align: center;"><span style="display: block; text-align: center;"><strong>Value (Cents)</strong></span></span><br />
</th>
        <th><span style="display: block; text-align: center;"><span style="display: block; text-align: center;"><strong>Name 1</strong></span></span><br />
</th>
        <th><span style="display: block; text-align: center;"><span style="display: block; text-align: center;"><strong>Name 2</strong></span></span><br />
</th>
        <th><span style="display: block; text-align: center;"><span style="display: block; text-align: center;"><strong>Name 3</strong></span></span><br />
</th>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">134217728/129140163</span></span><br />
</td>
        <td>| 27 -17 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">66.765</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">17-comma</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">20000/19683</span></span><br />
</td>
        <td>| 5 -9 4 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">27.660</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Minimal Diesis</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Tetracot Comma</span></span><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">2048/2025</span></span><br />
</td>
        <td>| 11 -4 -2 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">19.553</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Diaschisma</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">393216/390625</span></span><br />
</td>
        <td>| 17 1 -8 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">11.445</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Würschmidt comma</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">15625/15552</span></span><br />
</td>
        <td>| -6 -5 6 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">8.1073</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Kleisma</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Semicomma Majeur</span></span><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">1212717/1210381</span></span><br />
</td>
        <td>| 23 6 -14 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">3.338</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Vishnuzma</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Semisuper</span></span><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">1029/1000</span></span><br />
</td>
        <td>| -3 1 -3 3 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">49.492</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Keega</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="color: blue; display: block; text-align: center;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/49_48">49/48</a></span><br />
</span><br />
</td>
        <td>| -4 -1 0 2 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">35.697</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Slendro Diesis</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">875/864</span></span><br />
</td>
        <td>| -5 -3 3 1 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">21.902</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Keema</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">126/125</span></span><br />
</td>
        <td>| 1 2 -3 1 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">13.795</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Starling comma</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Septimal semicomma</span></span><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">100/99</span></span><br />
</td>
        <td>| 2 -2 2 0 -1&gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">17.399</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Ptolemisma</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Ptolemy's comma</span></span><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">243/242</span></span><br />
</td>
        <td>| -1 5 0 0 -2 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">7.1391</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Rastma</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Neutral third comma</span></span><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">385/384</span></span><br />
</td>
        <td>| -7 -1 1 1 1 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">4.5026</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Keenanisma</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">91/90</span></span><br />
</td>
        <td>| -1 -2 -1 1 0 1 &gt;<br />
</td>
        <td><span style="display: block; text-align: right;"><span style="display: block; text-align: right;">19.120</span></span><br />
</td>
        <td><span style="display: block; text-align: center;"><span style="display: block; text-align: center;">Superleap</span></span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x-Listen"></a><!-- ws:end:WikiTextHeadingRule:14 -->Listen</h2>
 <ul><li><a class="wiki_link_ext" href="http://www.archive.org/details/Ascension_105" rel="nofollow" target="_blank">Ascension</a></li><li><a class="wiki_link_ext" href="https://www.youtube.com/watch?v=FXTM0HeuExk" rel="nofollow" target="_blank">Uncomfortable In Crowds (extended)</a> by Robin Perry</li></ul><!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="x-Links"></a><!-- ws:end:WikiTextHeadingRule:16 -->Links</h2>
 <ul><li><a class="wiki_link_ext" href="http://www.microstick.net/34guitararticle.htm" rel="nofollow">34 Equal Guitar</a> by <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Larry%20Hanson">Larry Hanson</a></li><li><a class="wiki_link_ext" href="https://microstick.net" rel="nofollow">http://microstick.net/</a> websites of Neil Haverstick</li><li><a class="wiki_link_ext" href="https://myspace.com/microstick" rel="nofollow">https://myspace.com/microstick</a></li></ul></body></html>