33/32: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>spt3125
**Imported revision 515316274 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
'''33/32'''
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-06-30 20:42:38 UTC</tt>.<br>
: The original revision id was <tt>515316274</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**33/32**
|-5 1 0 0 1&gt;
|-5 1 0 0 1&gt;
53.2729 cents
53.2729 cents
[[media type="file" key="jid_33_32_pluck_adu_dr220.mp3"]] [[file:xenharmonic/jid_33_32_pluck_adu_dr220.mp3|sound sample]]


The al-Farabi (Alpharabius) quarter-tone, 33/32, is a [[superparticular]] ratio which differs by a [[385_384|keenanisma]], 385/384, from the [[36_35|septimal quarter tone]] 36/35. Raising a just [[4_3|perfect fourth]] by the al-Farabi quarter-tone leads to the [[11_8|11/8]] super-fourth. Raising it instead by 36/35 leads to the [[48_35|septimal super-fourth]] which approximates 11/8.
[[File:jid_33_32_pluck_adu_dr220.mp3]] [[:File:jid_33_32_pluck_adu_dr220.mp3|sound sample]]
 
The al-Farabi (Alpharabius) quarter-tone, 33/32, is a [[superparticular|superparticular]] ratio which differs by a [[385/384|keenanisma]], 385/384, from the [[36/35|septimal quarter tone]] 36/35. Raising a just [[4/3|perfect fourth]] by the al-Farabi quarter-tone leads to the [[11/8|11/8]] super-fourth. Raising it instead by 36/35 leads to the [[48/35|septimal super-fourth]] which approximates 11/8.


Arguably the al-Farabia quarter-tone could have been used as a melodic interval in the Greek Enharmonic Genus. The resulting tetrachord would include 32:33:34 within the interval of a perfect fourth. This ancient Greek scale can be approximated in [[22edo|22-edo]] and [[24edo|24-edo]], if the comma 1089/1088 is tempered so that 33/32 and 34/33 are equated.</pre></div>
Arguably the al-Farabia quarter-tone could have been used as a melodic interval in the Greek Enharmonic Genus. The resulting tetrachord would include 32:33:34 within the interval of a perfect fourth. This ancient Greek scale can be approximated in [[22edo|22-edo]] and [[24edo|24-edo]], if the comma 1089/1088 is tempered so that 33/32 and 34/33 are equated.
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;33_32&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;33/32&lt;/strong&gt;&lt;br /&gt;
|-5 1 0 0 1&amp;gt;&lt;br /&gt;
53.2729 cents&lt;br /&gt;
&lt;!-- ws:start:WikiTextMediaRule:0:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_33_32_pluck_adu_dr220.mp3?h=20&amp;amp;w=240&amp;quot; class=&amp;quot;WikiMedia WikiMediaFile&amp;quot; id=&amp;quot;wikitext@@media@@type=&amp;amp;quot;file&amp;amp;quot; key=&amp;amp;quot;jid_33_32_pluck_adu_dr220.mp3&amp;amp;quot;&amp;quot; title=&amp;quot;Local Media File&amp;quot;height=&amp;quot;20&amp;quot; width=&amp;quot;240&amp;quot;/&amp;gt; --&gt;&lt;embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_33_32_pluck_adu_dr220.mp3?file_extension=mp3&amp;autostart=false&amp;repeat=false&amp;showdigits=true&amp;showfsbutton=false&amp;width=240&amp;height=20"&gt;&lt;/embed&gt;&lt;!-- ws:end:WikiTextMediaRule:0 --&gt; &lt;a href="http://xenharmonic.wikispaces.com/file/view/jid_33_32_pluck_adu_dr220.mp3/515315672/jid_33_32_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_33_32_pluck_adu_dr220.mp3/515315672/jid_33_32_pluck_adu_dr220.mp3');"&gt;sound sample&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
The al-Farabi (Alpharabius) quarter-tone, 33/32, is a &lt;a class="wiki_link" href="/superparticular"&gt;superparticular&lt;/a&gt; ratio which differs by a &lt;a class="wiki_link" href="/385_384"&gt;keenanisma&lt;/a&gt;, 385/384, from the &lt;a class="wiki_link" href="/36_35"&gt;septimal quarter tone&lt;/a&gt; 36/35. Raising a just &lt;a class="wiki_link" href="/4_3"&gt;perfect fourth&lt;/a&gt; by the al-Farabi quarter-tone leads to the &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; super-fourth. Raising it instead by 36/35 leads to the &lt;a class="wiki_link" href="/48_35"&gt;septimal super-fourth&lt;/a&gt; which approximates 11/8.&lt;br /&gt;
&lt;br /&gt;
Arguably the al-Farabia quarter-tone could have been used as a melodic interval in the Greek Enharmonic Genus. The resulting tetrachord would include 32:33:34 within the interval of a perfect fourth. This ancient Greek scale can be approximated in &lt;a class="wiki_link" href="/22edo"&gt;22-edo&lt;/a&gt; and &lt;a class="wiki_link" href="/24edo"&gt;24-edo&lt;/a&gt;, if the comma 1089/1088 is tempered so that 33/32 and 34/33 are equated.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

33/32 |-5 1 0 0 1>

53.2729 cents

sound sample

The al-Farabi (Alpharabius) quarter-tone, 33/32, is a superparticular ratio which differs by a keenanisma, 385/384, from the septimal quarter tone 36/35. Raising a just perfect fourth by the al-Farabi quarter-tone leads to the 11/8 super-fourth. Raising it instead by 36/35 leads to the septimal super-fourth which approximates 11/8.

Arguably the al-Farabia quarter-tone could have been used as a melodic interval in the Greek Enharmonic Genus. The resulting tetrachord would include 32:33:34 within the interval of a perfect fourth. This ancient Greek scale can be approximated in 22-edo and 24-edo, if the comma 1089/1088 is tempered so that 33/32 and 34/33 are equated.