28edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 601449620 - Original comment: **
Wikispaces>TallKite
**Imported revision 602812588 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-05 15:14:37 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-12-26 04:36:49 UTC</tt>.<br>
: The original revision id was <tt>601449620</tt>.<br>
: The original revision id was <tt>602812588</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 20: Line 20:
The following table compares it to potentially useful nearby [[xenharmonic/just intervals|just intervals]].
The following table compares it to potentially useful nearby [[xenharmonic/just intervals|just intervals]].


|| Step # || ET Cents coarse/fine
 
DMS || Just Interval || Just Cents
||= Step # ||= ET Cents ||= Just Interval ||= Just Cents ||= Difference  
DMS || Difference (ET minus Just) ||
(ET minus Just) ||||||= [[xenharmonic/Ups and Downs Notation|Up/down]]
|| 1 || 42.86
[[xenharmonic/Ups and Downs Notation|Notation]] ||
51.43
||= 0 ||= 0¢ ||= 1/1 ||= 0¢ ||= 0¢ ||= unison ||= 1 ||= D ||
12°&lt;span style="background-color: #ffffff;"&gt;51'26"&lt;/span&gt; ||  ||  ||   ||
||= 1 ||= 42.86 ||=   ||=   ||=   ||= up-unison ||= ^1 ||= D^ ||
|| 2 || 85.71
||= 2 ||= 85.71 ||= 21:20 ||= 84.47 ||= 1.24 ||= double-up, double-down ||= ^^1, vv2 ||= D^^, Evv ||
102.86
||= 3 ||= 128.57 ||= 14:13 ||= 128.30 ||= 0.27 ||= down 2nd ||= v2 ||= Ev ||
&lt;span style="background-color: #ffffff;"&gt;25°42'51"&lt;/span&gt; || 21:20 || 84.47
||= 4 ||= 171.43 ||= 11:10 ||= 165.00 ||= 6.43 ||= 2nd ||= 2 ||= E ||
101.36
||= 5 ||= 214.29 ||= 17:15 ||= 216.69 ||= -2.40 ||= up 2nd ||= ^2 ||= E^ ||
&lt;span style="background-color: #ffffff;"&gt;25°20'25"&lt;/span&gt; || 1.24
||= 6 ||= 257.14 ||= 7:6 ||= 266.87 ||= -9.73 ||= double-up 2nd, double-down 3rd ||= ^^2, vv3 ||= E^^, Fvv ||
1.50
||= 7 ||= 300 ||= 6:5 ||= 315.64 ||= -15.64 ||= down 3rd ||= v3 ||= Fv ||
22'26" ||
||= 8 ||= 342.86 ||= 11:9 ||= 347.41 ||= -4.55 ||= 3rd ||= 3 ||= F ||
|| 3 || 128.57
||= 9 ||= 385.71 ||= 5:4 ||= 386.31 ||= -0.60 ||= up 3rd ||= ^3 ||= F^ ||
154.29
||= 10 ||= 428.57 ||= 9:7 ||= 435.08 ||= -6.51 ||= double-up 3rd, double-down 4th ||= ^^3, vv4 ||= F^^, Gvv ||
38°&lt;span style="background-color: #ffffff;"&gt;34'17"&lt;/span&gt; || 14:13 || 128.30
||= 11 ||= 471.43 ||= 21:16 ||= 470.78 ||= 0.65 ||= down 4th ||= v4 ||= Gv ||
153.96
||= 12 ||= 514.29 ||= 4:3 ||= 498.04 ||= 16.25 ||= 4th ||= 4 ||= G ||
38°29&lt;span style="background-color: #ffffff;"&gt;'22"&lt;/span&gt; || 0.27
||= 13 ||= 557.14 ||= 11:8 ||= 551.32 ||= 5.82 ||= up 4th ||= ^4 ||= G^ ||
0.33
||= 14 ||= 600 ||= 7:5 ||= 582.51 ||= 17.49 ||= double-up 4th, double-down 5th ||= ^^4, vv5 ||= G^^, vvA ||
4'55" ||
||= 15 ||= 642.86 ||= 16:11 ||= 648.68 ||= -5.82 ||= down 5th ||= v5 ||= Av ||
|| 4 || 171.43
||= 16 ||= 685.71 ||= 3:2 ||= 701.96 ||= -16.25 ||= 5th ||= 5 ||= A ||
205.71
||= 17 ||= 728.57 ||= 32:21 ||= 729.22 ||= -0.65 ||= up 5th ||= ^5 ||= A^ ||
&lt;span style="background-color: #ffffff;"&gt;51°25'43"&lt;/span&gt; || 11:10 || 165.00
||= 18 ||= 771.43 ||= 14:9 ||= 764.92 ||= 6.51 ||= double-up 5th, double-down 6th ||= ^^5, vv6 ||= A^^, Bvv ||
198.005
||= 19 ||= 814.29 ||= 5:8 ||= 813.68 ||= 0.61 ||= down 6th ||= v6 ||= Bv ||
&lt;span style="background-color: #ffffff;"&gt;49°30'5"&lt;/span&gt; || 6.43
||= 20 ||= 857.14 ||= 18:11 ||= 852.59 ||= 4.55 ||= 6th ||= 6 ||= B ||
7.705
||= 21 ||= 900 ||= 5:3 ||= 884.36 ||= 15.64 ||= up 6th ||= ^6 ||= B^ ||
1°55'38° ||
||= 22 ||= 942.86 ||= 12:7 ||= 933.13 ||= 9.73 ||= double-up 6th, double-down 7th ||= ^^6, vv7 ||= B^^, Cvv ||
|| 5 || 214.29
||= 23 ||= 985.71 ||= 30:17 ||= 983.31 ||= 2.40 ||= down 7th ||= v7 ||= Cv ||
257.14
||= 24 ||= 1028.57 ||= 20:11 ||= 1035.00 ||= -6.43 ||= 7th ||= 7 ||= C ||
64°&lt;span style="background-color: #ffffff;"&gt;17'9"&lt;/span&gt; || 17:15 || 216.69
||= 25 ||= 1071.42 ||= 13:7 ||= 1071.70 ||= -0.27 ||= up 7th ||= ^7 ||= C^ ||
260.02
||= 26 ||= 1114.29 ||= 40:21 ||= 1115.53 ||= -1.24 ||= double-up 7th, double-down 8ve ||= ^^7, vv8 ||= C^^, Dvv ||
65°22" || -2.40
||= 27 ||= 1157.14 ||=   ||=   ||=   ||= down 8ve ||= v8 ||= Dv ||
-2.88
||= 28 ||= 1200 ||= 2:1 ||= 1200 ||= 0 ||= 8ve ||= 8 ||= D ||
-43'13" ||
 
|| 6 || 257.14
=[[#Chord Names]]Chord Names=
308.57
 
&lt;span style="background-color: #ffffff;"&gt;77°8'34"&lt;/span&gt; || 7:6 || 266.87
Ups and downs can be used to name 28edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used.
320.245
 
80°3'41" || -9.73
0-8-16 = C E G = C = C or C perfect
-11.675
0-7-16 = C Ev G = C(v3) = C down-three
-2°55'7" ||
0-9-16 = C E^ G = C(^3) = C up-three
|| 7 || 300
0-8-15 = C E Gv = C(v5) = C down-five
360
0-9-17 = C E^ G^ = C(^3,^5) = C up-three up-five
90° || 6:5 || 315.64
 
378.77
0-8-16-24 = C E G B = C7 = C seven
94°41'33" || -15.64
0-8-16-23 = C E G Bv = C(v7) = C down-seven
-18.77
0-7-16-24 = C Ev G B = C7(v3) = C seven down-three
-4°41'33" ||
0-7-16-23 = C Ev G Bv = C.v7 = C dot down seven
|| 8 || 342.86
 
411.43
For a more complete list, see [[xenharmonic/Ups and Downs Notation#Chord%20names%20in%20other%20EDOs|Ups and Downs Notation - Chord names in other EDOs]].
&lt;span style="background-color: #ffffff;"&gt;102°51'26"&lt;/span&gt; || 11:9 || 347.41
 
416.89
 
&lt;span style="background-color: #ffffff;"&gt;104°13'21"&lt;/span&gt; || -4.55
-5.46
-1°21'55" ||
|| 9 || 385.71
462.86
115°&lt;span style="background-color: #ffffff;"&gt;42'51"&lt;/span&gt; || 5:4 || 386.31
463.58
115°&lt;span style="background-color: #ffffff;"&gt;53'39"&lt;/span&gt; || -0.60
-0.72
-10'48" ||
|| 10 || 428.57
514.29
&lt;span style="background-color: #ffffff;"&gt;128°34'17"&lt;/span&gt; || 9:7 || 435.08
522.10
130°31'30" || -6.51
-7.81
-1°57'13" ||
|| 11 || 471.43
565.71
141°&lt;span style="background-color: #ffffff;"&gt;25'43"&lt;/span&gt; || 21:16 || 470.78
564.94
141°&lt;span style="background-color: #ffffff;"&gt;14'3"&lt;/span&gt; || 0.65
0.77
11'40" ||
|| 12 || 514.29
617.14
&lt;span style="background-color: #ffffff;"&gt;154°17'9"&lt;/span&gt; || 4:3 || 498.04
597.65
149°24&lt;span style="background-color: #ffffff;"&gt;'49"&lt;/span&gt; || 16.25
19.49
4°52'20" ||
|| 13 || 557.14
668.57
167°&lt;span style="background-color: #ffffff;"&gt;8'34"&lt;/span&gt; || 11:8 || 551.32
661.58
165°&lt;span style="background-color: #ffffff;"&gt;23'43"&lt;/span&gt; || 5.82
6.99
1°45'9" ||
|| 14 || 600
720
&lt;span style="background-color: #ffffff;"&gt;180°&lt;/span&gt; || 7:5 10:7 || 582.51 617.49
699.015 740.985
174°45'13" &lt;span style="background-color: #ffffff;"&gt;185°14'47"&lt;/span&gt; || ±17.49
±20.985
±&lt;span style="background-color: #ffffff;"&gt;5°14'47"&lt;/span&gt; ||
|| 15 || 642.86
771.43
&lt;span style="background-color: #ffffff;"&gt;192°51'26"&lt;/span&gt; || 16:11 || 648.68
778.42
&lt;span style="background-color: #ffffff;"&gt;194°36'35"&lt;/span&gt; || -5.82
-6.99
-1°45'9" ||
|| 16 || 685.71
822.86
&lt;span style="background-color: #ffffff;"&gt;205°42'51"&lt;/span&gt; || 3:2 || 701.96
842.35
&lt;span style="background-color: #ffffff;"&gt;210°35'11"&lt;/span&gt; || -16.25
-19.49
-4°52'20" ||
|| 17 || 728.57
874.29
218°&lt;span style="background-color: #ffffff;"&gt;34'17"&lt;/span&gt; || 32:21 || 729.22
875,06
218°45'57" || -0.65
-0.77
-11'40" ||
|| 18 || 771.43
925.71
&lt;span style="background-color: #ffffff;"&gt;231°25'43"&lt;/span&gt; || 14:9 || 764.92
917.90
229°28'30" || 6.51
7.81
1°57'13" ||
|| 19 || 814.29
977.14
244°&lt;span style="background-color: #ffffff;"&gt;17'9"&lt;/span&gt; || 8:5 || 813.68
976.42
244°&lt;span style="background-color: #ffffff;"&gt;6'21"&lt;/span&gt; || 0.61
0.72
10'48" ||
|| 20 || 857.14
1028.57
&lt;span style="background-color: #ffffff;"&gt;257°8'34"&lt;/span&gt; || 18:11 || 852.59
1023.11
&lt;span style="background-color: #ffffff;"&gt;258°30'29"&lt;/span&gt; || 4.55
5.46
1°21'55" ||
|| 21 || 900
1080
270° || 5:3 || 884.36
1061.23
265°18'27" || 15.64
18.77
4°41'33" ||
|| 22 || 942.86
1131.43
&lt;span style="background-color: #ffffff;"&gt;282°51'26"&lt;/span&gt; || 12:7 || 933.13
1119.755
&lt;span style="background-color: #ffffff;"&gt;285°46'33"&lt;/span&gt; || 9.73
11.675
2°55'7" ||
|| 23 || 985.71
1185.86
&lt;span style="background-color: #ffffff;"&gt;295°42'51"&lt;/span&gt; || 30:17 || 983.31
1182.98
&lt;span style="background-color: #ffffff;"&gt;296°26'4"&lt;/span&gt; || 2.40
2.88
43'13" ||
|| 24 || 1028.57
1234.29
&lt;span style="background-color: #ffffff;"&gt;308°34'17"&lt;/span&gt; || 20:11 || 1035.00
1241.995
310°29'55" || -6.43
-7.705
-1°55'38° ||
|| 25 || 1071.42
1285.71
321°&lt;span style="background-color: #ffffff;"&gt;25'43"&lt;/span&gt; || 13:7 || 1071.70
1286.04
321°&lt;span style="background-color: #ffffff;"&gt;30'38"&lt;/span&gt; || -0.27
-0.33
-4'55" ||
|| 26 || 1114.29
1336.14
334°17'9" || 40:21 || 1115.53
1337.64
334°39'35" || -1.24
-1.50
-22'26" ||
|| 27 || 1157.14
1387.57
347°&lt;span style="background-color: #ffffff;"&gt;8'34"&lt;/span&gt; ||  ||  ||   ||
|| 28 || 1200, 1440
&lt;span style="background-color: #ffffff;"&gt;360°&lt;/span&gt; || 2:1 || 1200, 1440 || 0 ||
=&lt;span style="background-color: #ffffff;"&gt;Rank two temperaments&lt;/span&gt;=  
=&lt;span style="background-color: #ffffff;"&gt;Rank two temperaments&lt;/span&gt;=  


Line 226: Line 92:


=Commas=  
=Commas=  
28 EDO tempers out the following [[xenharmonic/comma|comma]]s. (Note: This assumes the val &lt; [[tel/28 44 65 79 97 104/1 |.)
28 EDO tempers out the following [[xenharmonic/comma|comma]]s. (Note: This assumes the val &lt; [[tel/28 44 65 79 97 104/1 |.)||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||||= 2187/2048|| | -11 7 &gt; ||&gt; 113.69 ||= Apotome ||= ||||= 648/625 || | 3 4 -4 &gt; ||&gt; 62.57 ||= Major Diesis ||= Diminished Comma ||||= 16875/16384 || | -14 3 4 &gt; ||&gt; 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||||= || | 17 1 -8 &gt; ||&gt; 11.45 ||= Wuerschmidt Comma ||= ||||= 36/35 || | 2 2 -1 -1 &gt; ||&gt; 48.77 ||= Septimal Quarter Tone ||= ||||= 50/49 || | 1 0 2 -2 &gt; ||&gt; 34.98 ||= Tritonic Diesis ||= Jubilisma ||||= 3125/3087 || | 0 -2 5 -3 &gt; ||&gt; 21.18 ||= Gariboh ||= ||||= 126/125 || | 1 2 -3 1 &gt; ||&gt; 13.79 ||= Septimal Semicomma ||= Starling Comma ||||= 65625/65536 || | -16 1 5 1 &gt; ||&gt; 2.35 ||= Horwell ||= ||||= || | 47 -7 -7 -7 &gt; ||&gt; 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||||= 176/175 || | 4 0 -2 -1 1 &gt; ||&gt; 9.86 ||= Valinorsma ||= ||||= 441/440 || | -3 2 -1 2 -1 &gt; ||&gt; 3.93 ||= Werckisma ||= ||||= 4000/3993 || | 5 -1 3 0 -3 &gt; ||&gt; 3.03 ||= Wizardharry ||= ||=Some scales= [[xenharmonic/machine5|machine5]]
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||
||= 2187/2048 || | -11 7 &gt; ||&gt; 113.69 ||= Apotome ||=   ||
||= 648/625 || | 3 4 -4 &gt; ||&gt; 62.57 ||= Major Diesis ||= Diminished Comma ||
||= 16875/16384 || | -14 3 4 &gt; ||&gt; 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||
||=   || | 17 1 -8 &gt; ||&gt; 11.45 ||= Wuerschmidt Comma ||=   ||
||= 36/35 || | 2 2 -1 -1 &gt; ||&gt; 48.77 ||= Septimal Quarter Tone ||=   ||
||= 50/49 || | 1 0 2 -2 &gt; ||&gt; 34.98 ||= Tritonic Diesis ||= Jubilisma ||
||= 3125/3087 || | 0 -2 5 -3 &gt; ||&gt; 21.18 ||= Gariboh ||=   ||
||= 126/125 || | 1 2 -3 1 &gt; ||&gt; 13.79 ||= Septimal Semicomma ||= Starling Comma ||
||= 65625/65536 || | -16 1 5 1 &gt; ||&gt; 2.35 ||= Horwell ||=   ||
||=   || | 47 -7 -7 -7 &gt; ||&gt; 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||
||= 176/175 || | 4 0 -2 -1 1 &gt; ||&gt; 9.86 ||= Valinorsma ||=   ||
||= 441/440 || | -3 2 -1 2 -1 &gt; ||&gt; 3.93 ||= Werckisma ||=   ||
||= 4000/3993 || | 5 -1 3 0 -3 &gt; ||&gt; 3.03 ||= Wizardharry ||=   ||
 
=Some scales=  
[[xenharmonic/machine5|machine5]]
[[xenharmonic/machine6|machine6]]
[[xenharmonic/machine6|machine6]]
[[xenharmonic/machine11|machine11]]
[[xenharmonic/machine11|machine11]]
Line 250: Line 99:
[[http://www.youtube.com/watch?v=26UpCbrb3mE|28 tone Prelude]] by Kosmorksy</pre></div>
[[http://www.youtube.com/watch?v=26UpCbrb3mE|28 tone Prelude]] by Kosmorksy</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;28edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Basic properties"&gt;Basic properties&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Subgroups"&gt;Subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Table of intervals"&gt;Table of intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Rank two temperaments"&gt;Rank two temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;28edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:14:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;&lt;a href="#Basic properties"&gt;Basic properties&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Subgroups"&gt;Subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Table of intervals"&gt;Table of intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Chord Names"&gt;Chord Names&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#Rank two temperaments"&gt;Rank two temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#Commas"&gt;Commas&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;hr /&gt;
&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;hr /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basic properties"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Basic properties&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basic properties"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Basic properties&lt;/h1&gt;
Line 263: Line 112:
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Table of intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Table of intervals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Table of intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Table of intervals&lt;/h1&gt;
  The following table compares it to potentially useful nearby &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/just%20intervals"&gt;just intervals&lt;/a&gt;.&lt;br /&gt;
  The following table compares it to potentially useful nearby &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/just%20intervals"&gt;just intervals&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;


Line 268: Line 118:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;Step #&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Step #&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;ET Cents&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ET Cents coarse/fine&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Just Interval&lt;br /&gt;
DMS&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Just Interval&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Just Cents&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Just Cents&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Difference &lt;br /&gt;
DMS&lt;br /&gt;
(ET minus Just)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Difference (ET minus Just)&lt;br /&gt;
         &lt;td colspan="3" style="text-align: center;"&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation"&gt;Up/down&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation"&gt;Notation&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0¢&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;42.86&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
51.43&lt;br /&gt;
12°&lt;span style="background-color: #ffffff;"&gt;51'26&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;unison&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;D&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;42.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;85.71&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
102.86&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;25°42'51&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;21:20&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;up-unison&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;84.47&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^1&lt;br /&gt;
101.36&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;25°20'25&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1.24&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;D^&lt;br /&gt;
1.50&lt;br /&gt;
22'26&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;85.71&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;128.57&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;21:20&lt;br /&gt;
154.29&lt;br /&gt;
38°&lt;span style="background-color: #ffffff;"&gt;34'17&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;14:13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;84.47&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;128.30&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1.24&lt;br /&gt;
153.96&lt;br /&gt;
38°29&lt;span style="background-color: #ffffff;"&gt;'22&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0.27&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;double-up, double-down&lt;br /&gt;
0.33&lt;br /&gt;
&lt;/td&gt;
4'55&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;^^1, vv2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D^^, Evv&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;4&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;128.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;14:13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;128.30&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;171.43&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;0.27&lt;br /&gt;
205.71&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;51°25'43&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;11:10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;down 2nd&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;165.00&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v2&lt;br /&gt;
198.005&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;49°30'5&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;6.43&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Ev&lt;br /&gt;
7.705&lt;br /&gt;
1°55'38°&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;5&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;171.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11:10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;165.00&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;214.29&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6.43&lt;br /&gt;
257.14&lt;br /&gt;
64°&lt;span style="background-color: #ffffff;"&gt;17'9&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;17:15&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2nd&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;216.69&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
260.02&lt;br /&gt;
65°22&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-2.40&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;E&lt;br /&gt;
-2.88&lt;br /&gt;
-43'13&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;6&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;214.29&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;17:15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;216.69&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;257.14&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-2.40&lt;br /&gt;
308.57&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;77°8'34&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7:6&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;up 2nd&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;266.87&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^2&lt;br /&gt;
320.245&lt;br /&gt;
80°3'41&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-9.73&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;E^&lt;br /&gt;
-11.675&lt;br /&gt;
-2°55'7&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;257.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7:6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;266.87&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;300&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-9.73&lt;br /&gt;
360&lt;br /&gt;
90°&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;6:5&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;double-up 2nd, double-down 3rd&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;315.64&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^^2, vv3&lt;br /&gt;
378.77&lt;br /&gt;
94°41'33&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-15.64&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;E^^, Fvv&lt;br /&gt;
-18.77&lt;br /&gt;
-4°41'33&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;8&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;300&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6:5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;315.64&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;342.86&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-15.64&lt;br /&gt;
411.43&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;102°51'26&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;11:9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;down 3rd&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;347.41&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v3&lt;br /&gt;
416.89&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;104°13'21&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-4.55&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Fv&lt;br /&gt;
-5.46&lt;br /&gt;
-1°21'55&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;342.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11:9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;347.41&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;385.71&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-4.55&lt;br /&gt;
462.86&lt;br /&gt;
115°&lt;span style="background-color: #ffffff;"&gt;42'51&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5:4&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;3rd&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;386.31&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
463.58&lt;br /&gt;
115°&lt;span style="background-color: #ffffff;"&gt;53'39&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-0.60&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;F&lt;br /&gt;
-0.72&lt;br /&gt;
-10'48&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;385.71&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;428.57&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5:4&lt;br /&gt;
514.29&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;128°34'17&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;9:7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;386.31&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;435.08&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-0.60&lt;br /&gt;
522.10&lt;br /&gt;
130°31'30&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-6.51&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;up 3rd&lt;br /&gt;
-7.81&lt;br /&gt;
&lt;/td&gt;
-1°57'13&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;^3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F^&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;428.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9:7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;435.08&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;471.43&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-6.51&lt;br /&gt;
565.71&lt;br /&gt;
141°&lt;span style="background-color: #ffffff;"&gt;25'43&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;21:16&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;double-up 3rd, double-down 4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;470.78&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^^3, vv4&lt;br /&gt;
564.94&lt;br /&gt;
141°&lt;span style="background-color: #ffffff;"&gt;14'3&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0.65&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;F^^, Gvv&lt;br /&gt;
0.77&lt;br /&gt;
11'40&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;12&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;471.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;21:16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;470.78&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;514.29&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;0.65&lt;br /&gt;
617.14&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;154°17'9&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4:3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;down 4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;498.04&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v4&lt;br /&gt;
597.65&lt;br /&gt;
149°24&lt;span style="background-color: #ffffff;"&gt;'49&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;16.25&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Gv&lt;br /&gt;
19.49&lt;br /&gt;
4°52'20&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;557.14&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;514.29&lt;br /&gt;
668.57&lt;br /&gt;
167°&lt;span style="background-color: #ffffff;"&gt;8'34&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;11:8&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;4:3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;551.32&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;498.04&lt;br /&gt;
661.58&lt;br /&gt;
165°&lt;span style="background-color: #ffffff;"&gt;23'43&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5.82&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;16.25&lt;br /&gt;
6.99&lt;br /&gt;
&lt;/td&gt;
1°45'9&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;14&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;557.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11:8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;551.32&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5.82&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;up 4th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G^&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7:5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;582.51&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;600&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;17.49&lt;br /&gt;
720&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;180°&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7:5 10:7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;double-up 4th, double-down 5th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;582.51 617.49&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^^4, vv5&lt;br /&gt;
699.015 740.985&lt;br /&gt;
174°45'13&amp;quot; &lt;span style="background-color: #ffffff;"&gt;185°14'47&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;±17.49&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;G^^, vvA&lt;br /&gt;
±20.985&lt;br /&gt;
±&lt;span style="background-color: #ffffff;"&gt;5°14'47&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;15&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;642.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;16:11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;648.68&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;642.86&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-5.82&lt;br /&gt;
771.43&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;192°51'26&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;16:11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;down 5th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;648.68&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v5&lt;br /&gt;
778.42&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;194°36'35&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-5.82&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Av&lt;br /&gt;
-6.99&lt;br /&gt;
-1°45'9&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;16&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;685.71&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3:2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;701.96&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;685.71&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-16.25&lt;br /&gt;
822.86&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;205°42'51&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3:2&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;701.96&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
842.35&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;210°35'11&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-16.25&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;A&lt;br /&gt;
-19.49&lt;br /&gt;
-4°52'20&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;17&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;728.57&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;728.57&lt;br /&gt;
874.29&lt;br /&gt;
218°&lt;span style="background-color: #ffffff;"&gt;34'17&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;32:21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;32:21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;729.22&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;729.22&lt;br /&gt;
875,06&lt;br /&gt;
218°45'57&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-0.65&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-0.65&lt;br /&gt;
-0.77&lt;br /&gt;
&lt;/td&gt;
-11'40&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;up 5th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A^&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;18&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;771.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;14:9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;764.92&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;771.43&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6.51&lt;br /&gt;
925.71&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;231°25'43&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;14:9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;double-up 5th, double-down 6th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;764.92&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^^5, vv6&lt;br /&gt;
917.90&lt;br /&gt;
229°28'30&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;6.51&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;A^^, Bvv&lt;br /&gt;
7.81&lt;br /&gt;
1°57'13&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;19&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;814.29&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5:8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;814.29&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;813.68&lt;br /&gt;
977.14&lt;br /&gt;
244°&lt;span style="background-color: #ffffff;"&gt;17'9&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;8:5&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;0.61&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;813.68&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;down 6th&lt;br /&gt;
976.42&lt;br /&gt;
244°&lt;span style="background-color: #ffffff;"&gt;6'21&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0.61&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v6&lt;br /&gt;
0.72&lt;br /&gt;
&lt;/td&gt;
10'48&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;Bv&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;20&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;20&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;857.14&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;857.14&lt;br /&gt;
1028.57&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;257°8'34&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;18:11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;18:11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;852.59&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;852.59&lt;br /&gt;
1023.11&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;258°30'29&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4.55&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;4.55&lt;br /&gt;
5.46&lt;br /&gt;
&lt;/td&gt;
1°21'55&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;900&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;900&lt;br /&gt;
1080&lt;br /&gt;
270°&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5:3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5:3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;884.36&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;884.36&lt;br /&gt;
1061.23&lt;br /&gt;
265°18'27&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;15.64&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;15.64&lt;br /&gt;
18.77&lt;br /&gt;
&lt;/td&gt;
4°41'33&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;up 6th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B^&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;22&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;22&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;942.86&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;942.86&lt;br /&gt;
1131.43&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;282°51'26&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;12:7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12:7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;933.13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;933.13&lt;br /&gt;
1119.755&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;285°46'33&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;9.73&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9.73&lt;br /&gt;
11.675&lt;br /&gt;
&lt;/td&gt;
2°55'7&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;double-up 6th, double-down 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^6, vv7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B^^, Cvv&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;23&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;985.71&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;30:17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;983.31&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;985.71&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2.40&lt;br /&gt;
1185.86&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;295°42'51&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;30:17&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;down 7th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;983.31&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v7&lt;br /&gt;
1182.98&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;296°26'4&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2.40&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Cv&lt;br /&gt;
2.88&lt;br /&gt;
43'13&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;24&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1028.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;20:11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1028.57&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1035.00&lt;br /&gt;
1234.29&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;308°34'17&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;20:11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-6.43&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1035.00&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;7th&lt;br /&gt;
1241.995&lt;br /&gt;
310°29'55&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-6.43&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
-7.705&lt;br /&gt;
&lt;/td&gt;
-1°55'38°&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;C&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;25&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1071.42&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1071.42&lt;br /&gt;
1285.71&lt;br /&gt;
321°&lt;span style="background-color: #ffffff;"&gt;25'43&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13:7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13:7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1071.70&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1071.70&lt;br /&gt;
1286.04&lt;br /&gt;
321°&lt;span style="background-color: #ffffff;"&gt;30'38&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-0.27&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-0.27&lt;br /&gt;
-0.33&lt;br /&gt;
&lt;/td&gt;
-4'55&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;up 7th&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C^&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;26&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;26&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1114.29&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1114.29&lt;br /&gt;
1336.14&lt;br /&gt;
334°17'9&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;40:21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;40:21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1115.53&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1115.53&lt;br /&gt;
1337.64&lt;br /&gt;
334°39'35&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;-1.24&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-1.24&lt;br /&gt;
-1.50&lt;br /&gt;
&lt;/td&gt;
-22'26&amp;quot;&lt;br /&gt;
        &lt;td style="text-align: center;"&gt;double-up 7th, double-down 8ve&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^^7, vv8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C^^, Dvv&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;27&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1157.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1157.14&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
1387.57&lt;br /&gt;
347°&lt;span style="background-color: #ffffff;"&gt;8'34&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;down 8ve&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Dv&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;28&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1200&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2:1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1200, 1440&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1200&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;360°&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2:1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1200, 1440&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8ve&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
&lt;/table&gt;
&lt;/table&gt;


&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Rank two temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;span style="background-color: #ffffff;"&gt;Rank two temperaments&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Chord Names"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:23:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@Chord Names&amp;quot; title=&amp;quot;Anchor: Chord Names&amp;quot;/&amp;gt; --&gt;&lt;a name="Chord Names"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:23 --&gt;Chord Names&lt;/h1&gt;
&lt;br /&gt;
Ups and downs can be used to name 28edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used.&lt;br /&gt;
&lt;br /&gt;
0-8-16 = C E G = C = C or C perfect&lt;br /&gt;
0-7-16 = C Ev G = C(v3) = C down-three&lt;br /&gt;
0-9-16 = C E^ G = C(^3) = C up-three&lt;br /&gt;
0-8-15 = C E Gv = C(v5) = C down-five&lt;br /&gt;
0-9-17 = C E^ G^ = C(^3,^5) = C up-three up-five&lt;br /&gt;
&lt;br /&gt;
0-8-16-24 = C E G B = C7 = C seven&lt;br /&gt;
0-8-16-23 = C E G Bv = C(v7) = C down-seven&lt;br /&gt;
0-7-16-24 = C Ev G B = C7(v3) = C seven down-three&lt;br /&gt;
0-7-16-23 = C Ev G Bv = C.v7 = C dot down seven&lt;br /&gt;
&lt;br /&gt;
For a more complete list, see &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation#Chord%20names%20in%20other%20EDOs"&gt;Ups and Downs Notation - Chord names in other EDOs&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Rank two temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;span style="background-color: #ffffff;"&gt;Rank two temperaments&lt;/span&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;


Line 903: Line 805:


&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Commas&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Commas&lt;/h1&gt;
  28 EDO tempers out the following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; &lt;a class="wiki_link" href="http://tel.wikispaces.com/-/28%2044%2065%2079%2097%20104/1%20%7C.%29%7C%7C~%20Comma%20%7C%7C~%20Monzo%20%7C%7C~%20Value%20%28Cents%29%20%7C%7C~%20Name%201%20%7C%7C~%20Name%202%20%7C%7C%7C%7C%3D%202187/2048"&gt;| | -11 7 &amp;gt; ||&amp;gt; 113.69 ||= Apotome ||=   ||||= 648/625 || | 3 4 -4 &amp;gt; ||&amp;gt; 62.57 ||= Major Diesis ||= Diminished Comma ||||= 16875/16384 || | -14 3 4 &amp;gt; ||&amp;gt; 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||||=   || | 17 1 -8 &amp;gt; ||&amp;gt; 11.45 ||= Wuerschmidt Comma ||=   ||||= 36/35 || | 2 2 -1 -1 &amp;gt; ||&amp;gt; 48.77 ||= Septimal Quarter Tone ||=   ||||= 50/49 || | 1 0 2 -2 &amp;gt; ||&amp;gt; 34.98 ||= Tritonic Diesis ||= Jubilisma ||||= 3125/3087 || | 0 -2 5 -3 &amp;gt; ||&amp;gt; 21.18 ||= Gariboh ||=   ||||= 126/125 || | 1 2 -3 1 &amp;gt; ||&amp;gt; 13.79 ||= Septimal Semicomma ||= Starling Comma ||||= 65625/65536 || | -16 1 5 1 &amp;gt; ||&amp;gt; 2.35 ||= Horwell ||=   ||||=   || | 47 -7 -7 -7 &amp;gt; ||&amp;gt; 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||||= 176/175 || | 4 0 -2 -1 1 &amp;gt; ||&amp;gt; 9.86 ||= Valinorsma ||=   ||||= 441/440 || | -3 2 -1 2 -1 &amp;gt; ||&amp;gt; 3.93 ||= Werckisma ||=   ||||= 4000/3993 || | 5 -1 3 0 -3 &amp;gt; ||&amp;gt; 3.03 ||= Wizardharry ||=   ||=Some scales= [[xenharmonic/machine5|machine5&lt;/a&gt;&lt;br /&gt;
  28 EDO tempers out the following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the val &amp;lt; &lt;a class="wiki_link" href="http://tel.wikispaces.com/-/28%2044%2065%2079%2097%20104/1%20%7C.%29%7C%7C~%20Comma%20%7C%7C~%20Monzo%20%7C%7C~%20Value%20%28Cents%29%20%7C%7C~%20Name%201%20%7C%7C~%20Name%202%20%7C%7C%7C%7C%3D%202187/2048"&gt;| | -11 7 &amp;gt; ||&amp;gt; 113.69 ||= Apotome ||= ||||= 648/625 || | 3 4 -4 &amp;gt; ||&amp;gt; 62.57 ||= Major Diesis ||= Diminished Comma ||||= 16875/16384 || | -14 3 4 &amp;gt; ||&amp;gt; 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||||= || | 17 1 -8 &amp;gt; ||&amp;gt; 11.45 ||= Wuerschmidt Comma ||= ||||= 36/35 || | 2 2 -1 -1 &amp;gt; ||&amp;gt; 48.77 ||= Septimal Quarter Tone ||= ||||= 50/49 || | 1 0 2 -2 &amp;gt; ||&amp;gt; 34.98 ||= Tritonic Diesis ||= Jubilisma ||||= 3125/3087 || | 0 -2 5 -3 &amp;gt; ||&amp;gt; 21.18 ||= Gariboh ||= ||||= 126/125 || | 1 2 -3 1 &amp;gt; ||&amp;gt; 13.79 ||= Septimal Semicomma ||= Starling Comma ||||= 65625/65536 || | -16 1 5 1 &amp;gt; ||&amp;gt; 2.35 ||= Horwell ||= ||||= || | 47 -7 -7 -7 &amp;gt; ||&amp;gt; 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||||= 176/175 || | 4 0 -2 -1 1 &amp;gt; ||&amp;gt; 9.86 ||= Valinorsma ||= ||||= 441/440 || | -3 2 -1 2 -1 &amp;gt; ||&amp;gt; 3.93 ||= Werckisma ||= ||||= 4000/3993 || | 5 -1 3 0 -3 &amp;gt; ||&amp;gt; 3.03 ||= Wizardharry ||= ||=Some scales= [[xenharmonic/machine5|machine5&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine6"&gt;machine6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine6"&gt;machine6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine11"&gt;machine11&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine11"&gt;machine11&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Compositions"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Compositions&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Compositions"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Compositions&lt;/h1&gt;
  &lt;a class="wiki_link_ext" href="http://www.youtube.com/watch?v=26UpCbrb3mE" rel="nofollow"&gt;28 tone Prelude&lt;/a&gt; by Kosmorksy&lt;/body&gt;&lt;/html&gt;</pre></div>
  &lt;a class="wiki_link_ext" href="http://www.youtube.com/watch?v=26UpCbrb3mE" rel="nofollow"&gt;28 tone Prelude&lt;/a&gt; by Kosmorksy&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 04:36, 26 December 2016

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author TallKite and made on 2016-12-26 04:36:49 UTC.
The original revision id was 602812588.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]
----

=Basic properties= 
28edo, a multiple of both [[xenharmonic/7edo|7edo]] and [[xenharmonic/14edo|14edo]] (and of course [[xenharmonic/2edo|2edo]] and [[xenharmonic/4edo|4edo]]), has a step size of 42.857 [[xenharmonic/cent|cent]]s. It shares three intervals with [[xenharmonic/12edo|12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[xenharmonic/tempering out|tempers out]] the [[xenharmonic/greater diesis|greater diesis]] [[xenharmonic/648_625|648:625]]. It does not however temper out the [[xenharmonic/128_125|128:125]] [[xenharmonic/lesser diesis|lesser diesis]], as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 7edo. It also has decent approximations of several septimal intervals, of which [[xenharmonic/9_7|9/7]] and its inversion [[xenharmonic/14_9|14/9]] are also found in 14edo.

=Subgroups= 
28edo can approximate the [[xenharmonic/7-limit|7-limit]] subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to [[xenharmonic/Semicomma family|orwell temperament]] now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the [[xenharmonic/augmented triad|augmented triad]] has a very low complexity, so many of them appear in the [[xenharmonic/MOS scales|MOS scales]] for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.

Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.

=Table of intervals= 
The following table compares it to potentially useful nearby [[xenharmonic/just intervals|just intervals]].


||= Step # ||= ET Cents ||= Just Interval ||= Just Cents ||= Difference 
(ET minus Just) ||||||= [[xenharmonic/Ups and Downs Notation|Up/down]]
[[xenharmonic/Ups and Downs Notation|Notation]] ||
||= 0 ||= 0¢ ||= 1/1 ||= 0¢ ||= 0¢ ||= unison ||= 1 ||= D ||
||= 1 ||= 42.86 ||=   ||=   ||=   ||= up-unison ||= ^1 ||= D^ ||
||= 2 ||= 85.71 ||= 21:20 ||= 84.47 ||= 1.24 ||= double-up, double-down ||= ^^1, vv2 ||= D^^, Evv ||
||= 3 ||= 128.57 ||= 14:13 ||= 128.30 ||= 0.27 ||= down 2nd ||= v2 ||= Ev ||
||= 4 ||= 171.43 ||= 11:10 ||= 165.00 ||= 6.43 ||= 2nd ||= 2 ||= E ||
||= 5 ||= 214.29 ||= 17:15 ||= 216.69 ||= -2.40 ||= up 2nd ||= ^2 ||= E^ ||
||= 6 ||= 257.14 ||= 7:6 ||= 266.87 ||= -9.73 ||= double-up 2nd, double-down 3rd ||= ^^2, vv3 ||= E^^, Fvv ||
||= 7 ||= 300 ||= 6:5 ||= 315.64 ||= -15.64 ||= down 3rd ||= v3 ||= Fv ||
||= 8 ||= 342.86 ||= 11:9 ||= 347.41 ||= -4.55 ||= 3rd ||= 3 ||= F ||
||= 9 ||= 385.71 ||= 5:4 ||= 386.31 ||= -0.60 ||= up 3rd ||= ^3 ||= F^ ||
||= 10 ||= 428.57 ||= 9:7 ||= 435.08 ||= -6.51 ||= double-up 3rd, double-down 4th ||= ^^3, vv4 ||= F^^, Gvv ||
||= 11 ||= 471.43 ||= 21:16 ||= 470.78 ||= 0.65 ||= down 4th ||= v4 ||= Gv ||
||= 12 ||= 514.29 ||= 4:3 ||= 498.04 ||= 16.25 ||= 4th ||= 4 ||= G ||
||= 13 ||= 557.14 ||= 11:8 ||= 551.32 ||= 5.82 ||= up 4th ||= ^4 ||= G^ ||
||= 14 ||= 600 ||= 7:5 ||= 582.51 ||= 17.49 ||= double-up 4th, double-down 5th ||= ^^4, vv5 ||= G^^, vvA ||
||= 15 ||= 642.86 ||= 16:11 ||= 648.68 ||= -5.82 ||= down 5th ||= v5 ||= Av ||
||= 16 ||= 685.71 ||= 3:2 ||= 701.96 ||= -16.25 ||= 5th ||= 5 ||= A ||
||= 17 ||= 728.57 ||= 32:21 ||= 729.22 ||= -0.65 ||= up 5th ||= ^5 ||= A^ ||
||= 18 ||= 771.43 ||= 14:9 ||= 764.92 ||= 6.51 ||= double-up 5th, double-down 6th ||= ^^5, vv6 ||= A^^, Bvv ||
||= 19 ||= 814.29 ||= 5:8 ||= 813.68 ||= 0.61 ||= down 6th ||= v6 ||= Bv ||
||= 20 ||= 857.14 ||= 18:11 ||= 852.59 ||= 4.55 ||= 6th ||= 6 ||= B ||
||= 21 ||= 900 ||= 5:3 ||= 884.36 ||= 15.64 ||= up 6th ||= ^6 ||= B^ ||
||= 22 ||= 942.86 ||= 12:7 ||= 933.13 ||= 9.73 ||= double-up 6th, double-down 7th ||= ^^6, vv7 ||= B^^, Cvv ||
||= 23 ||= 985.71 ||= 30:17 ||= 983.31 ||= 2.40 ||= down 7th ||= v7 ||= Cv ||
||= 24 ||= 1028.57 ||= 20:11 ||= 1035.00 ||= -6.43 ||= 7th ||= 7 ||= C ||
||= 25 ||= 1071.42 ||= 13:7 ||= 1071.70 ||= -0.27 ||= up 7th ||= ^7 ||= C^ ||
||= 26 ||= 1114.29 ||= 40:21 ||= 1115.53 ||= -1.24 ||= double-up 7th, double-down 8ve ||= ^^7, vv8 ||= C^^, Dvv ||
||= 27 ||= 1157.14 ||=   ||=   ||=   ||= down 8ve ||= v8 ||= Dv ||
||= 28 ||= 1200 ||= 2:1 ||= 1200 ||= 0 ||= 8ve ||= 8 ||= D ||

=[[#Chord Names]]Chord Names= 

Ups and downs can be used to name 28edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used.

0-8-16 = C E G = C = C or C perfect
0-7-16 = C Ev G = C(v3) = C down-three
0-9-16 = C E^ G = C(^3) = C up-three
0-8-15 = C E Gv = C(v5) = C down-five
0-9-17 = C E^ G^ = C(^3,^5) = C up-three up-five

0-8-16-24 = C E G B = C7 = C seven
0-8-16-23 = C E G Bv = C(v7) = C down-seven
0-7-16-24 = C Ev G B = C7(v3) = C seven down-three
0-7-16-23 = C Ev G Bv = C.v7 = C dot down seven

For a more complete list, see [[xenharmonic/Ups and Downs Notation#Chord%20names%20in%20other%20EDOs|Ups and Downs Notation - Chord names in other EDOs]].


=<span style="background-color: #ffffff;">Rank two temperaments</span>= 

||~ Periods
per octave ||~ Generator ||~ Temperaments ||
|| 1 || 1\28 ||   ||
|| 1 || 3\28 || [[xenharmonic/Negri|Negri]] ||
|| 1 || 5\28 || [[xenharmonic/Machine|Machine]] ||
|| 1 || 9\28 || [[xenharmonic/Würschmidt family#Worschmidt|Worschmidt]] ||
|| 1 || 11\28 ||   ||
|| 1 || 13\28 || <span style="background-color: #ffffff;">[[xenharmonic/Thuja|Thuja]]</span> ||
|| 2 || 1\28 ||   ||
|| 2 || 3\28 ||   ||
|| 2 || 5\28 || [[antikythera|Antikythera]] ||
|| 4 || 1\28 ||   ||
|| 4 || 2\28 || [[xenharmonic/Diminished#Demolished|Demolished]] ||
|| 4 || 3\28 ||   ||
|| 7 || 1\28 || [[xenharmonic/Apotome family|Whitewood]] ||
|| 14 || 1\28 ||   ||

=Commas= 
28 EDO tempers out the following [[xenharmonic/comma|comma]]s. (Note: This assumes the val < [[tel/28 44 65 79 97 104/1 |.)||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||||= 2187/2048|| | -11 7 > ||> 113.69 ||= Apotome ||= ||||= 648/625 || | 3 4 -4 > ||> 62.57 ||= Major Diesis ||= Diminished Comma ||||= 16875/16384 || | -14 3 4 > ||> 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||||= || | 17 1 -8 > ||> 11.45 ||= Wuerschmidt Comma ||= ||||= 36/35 || | 2 2 -1 -1 > ||> 48.77 ||= Septimal Quarter Tone ||= ||||= 50/49 || | 1 0 2 -2 > ||> 34.98 ||= Tritonic Diesis ||= Jubilisma ||||= 3125/3087 || | 0 -2 5 -3 > ||> 21.18 ||= Gariboh ||= ||||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Septimal Semicomma ||= Starling Comma ||||= 65625/65536 || | -16 1 5 1 > ||> 2.35 ||= Horwell ||= ||||= || | 47 -7 -7 -7 > ||> 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||||= 176/175 || | 4 0 -2 -1 1 > ||> 9.86 ||= Valinorsma ||= ||||= 441/440 || | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||= ||||= 4000/3993 || | 5 -1 3 0 -3 > ||> 3.03 ||= Wizardharry ||= ||=Some scales= [[xenharmonic/machine5|machine5]]
[[xenharmonic/machine6|machine6]]
[[xenharmonic/machine11|machine11]]

=Compositions= 
[[http://www.youtube.com/watch?v=26UpCbrb3mE|28 tone Prelude]] by Kosmorksy

Original HTML content:

<html><head><title>28edo</title></head><body><!-- ws:start:WikiTextTocRule:14:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --><a href="#Basic properties">Basic properties</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#Subgroups">Subgroups</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Table of intervals">Table of intervals</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Chord Names">Chord Names</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Rank two temperaments">Rank two temperaments</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: -->
<!-- ws:end:WikiTextTocRule:22 --><hr />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basic properties"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basic properties</h1>
 28edo, a multiple of both <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/14edo">14edo</a> (and of course <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2edo">2edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/4edo">4edo</a>), has a step size of 42.857 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. It shares three intervals with <a class="wiki_link" href="http://xenharmonic.wikispaces.com/12edo">12edo</a>: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it <a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out">tempers out</a> the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/greater%20diesis">greater diesis</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/648_625">648:625</a>. It does not however temper out the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/128_125">128:125</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/lesser%20diesis">lesser diesis</a>, as its major third is less than 1 cent flat (and its inversion the minor sixth less than 1 cent sharp). It has the same perfect fourth and fifth as 7edo. It also has decent approximations of several septimal intervals, of which <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9_7">9/7</a> and its inversion <a class="wiki_link" href="http://xenharmonic.wikispaces.com/14_9">14/9</a> are also found in 14edo.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:2 -->Subgroups</h1>
 28edo can approximate the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7-limit">7-limit</a> subgroup 2.27.5.21 quite well, and on this subgroup it has the same commas and tunings as 84edo. The temperament corresponding to <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family">orwell temperament</a> now has a major third as generator, though as before 225/224, 1728/1715 and 6144/6125 are tempered out. The 225/224-tempered version of the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/augmented%20triad">augmented triad</a> has a very low complexity, so many of them appear in the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20scales">MOS scales</a> for this temperament, which have sizes 7, 10, 13, 16, 19, 22, 25.<br />
<br />
Another subgroup for which 28edo works quite well is 2.5.11.19.21.27.29.39.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Table of intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Table of intervals</h1>
 The following table compares it to potentially useful nearby <a class="wiki_link" href="http://xenharmonic.wikispaces.com/just%20intervals">just intervals</a>.<br />
<br />
<br />


<table class="wiki_table">
    <tr>
        <td style="text-align: center;">Step #<br />
</td>
        <td style="text-align: center;">ET Cents<br />
</td>
        <td style="text-align: center;">Just Interval<br />
</td>
        <td style="text-align: center;">Just Cents<br />
</td>
        <td style="text-align: center;">Difference <br />
(ET minus Just)<br />
</td>
        <td colspan="3" style="text-align: center;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">Up/down</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">Notation</a><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">0<br />
</td>
        <td style="text-align: center;">0¢<br />
</td>
        <td style="text-align: center;">1/1<br />
</td>
        <td style="text-align: center;">0¢<br />
</td>
        <td style="text-align: center;">0¢<br />
</td>
        <td style="text-align: center;">unison<br />
</td>
        <td style="text-align: center;">1<br />
</td>
        <td style="text-align: center;">D<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">1<br />
</td>
        <td style="text-align: center;">42.86<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;">up-unison<br />
</td>
        <td style="text-align: center;">^1<br />
</td>
        <td style="text-align: center;">D^<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">2<br />
</td>
        <td style="text-align: center;">85.71<br />
</td>
        <td style="text-align: center;">21:20<br />
</td>
        <td style="text-align: center;">84.47<br />
</td>
        <td style="text-align: center;">1.24<br />
</td>
        <td style="text-align: center;">double-up, double-down<br />
</td>
        <td style="text-align: center;">^^1, vv2<br />
</td>
        <td style="text-align: center;">D^^, Evv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3<br />
</td>
        <td style="text-align: center;">128.57<br />
</td>
        <td style="text-align: center;">14:13<br />
</td>
        <td style="text-align: center;">128.30<br />
</td>
        <td style="text-align: center;">0.27<br />
</td>
        <td style="text-align: center;">down 2nd<br />
</td>
        <td style="text-align: center;">v2<br />
</td>
        <td style="text-align: center;">Ev<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">4<br />
</td>
        <td style="text-align: center;">171.43<br />
</td>
        <td style="text-align: center;">11:10<br />
</td>
        <td style="text-align: center;">165.00<br />
</td>
        <td style="text-align: center;">6.43<br />
</td>
        <td style="text-align: center;">2nd<br />
</td>
        <td style="text-align: center;">2<br />
</td>
        <td style="text-align: center;">E<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">5<br />
</td>
        <td style="text-align: center;">214.29<br />
</td>
        <td style="text-align: center;">17:15<br />
</td>
        <td style="text-align: center;">216.69<br />
</td>
        <td style="text-align: center;">-2.40<br />
</td>
        <td style="text-align: center;">up 2nd<br />
</td>
        <td style="text-align: center;">^2<br />
</td>
        <td style="text-align: center;">E^<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">6<br />
</td>
        <td style="text-align: center;">257.14<br />
</td>
        <td style="text-align: center;">7:6<br />
</td>
        <td style="text-align: center;">266.87<br />
</td>
        <td style="text-align: center;">-9.73<br />
</td>
        <td style="text-align: center;">double-up 2nd, double-down 3rd<br />
</td>
        <td style="text-align: center;">^^2, vv3<br />
</td>
        <td style="text-align: center;">E^^, Fvv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">7<br />
</td>
        <td style="text-align: center;">300<br />
</td>
        <td style="text-align: center;">6:5<br />
</td>
        <td style="text-align: center;">315.64<br />
</td>
        <td style="text-align: center;">-15.64<br />
</td>
        <td style="text-align: center;">down 3rd<br />
</td>
        <td style="text-align: center;">v3<br />
</td>
        <td style="text-align: center;">Fv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">8<br />
</td>
        <td style="text-align: center;">342.86<br />
</td>
        <td style="text-align: center;">11:9<br />
</td>
        <td style="text-align: center;">347.41<br />
</td>
        <td style="text-align: center;">-4.55<br />
</td>
        <td style="text-align: center;">3rd<br />
</td>
        <td style="text-align: center;">3<br />
</td>
        <td style="text-align: center;">F<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">9<br />
</td>
        <td style="text-align: center;">385.71<br />
</td>
        <td style="text-align: center;">5:4<br />
</td>
        <td style="text-align: center;">386.31<br />
</td>
        <td style="text-align: center;">-0.60<br />
</td>
        <td style="text-align: center;">up 3rd<br />
</td>
        <td style="text-align: center;">^3<br />
</td>
        <td style="text-align: center;">F^<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">10<br />
</td>
        <td style="text-align: center;">428.57<br />
</td>
        <td style="text-align: center;">9:7<br />
</td>
        <td style="text-align: center;">435.08<br />
</td>
        <td style="text-align: center;">-6.51<br />
</td>
        <td style="text-align: center;">double-up 3rd, double-down 4th<br />
</td>
        <td style="text-align: center;">^^3, vv4<br />
</td>
        <td style="text-align: center;">F^^, Gvv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">11<br />
</td>
        <td style="text-align: center;">471.43<br />
</td>
        <td style="text-align: center;">21:16<br />
</td>
        <td style="text-align: center;">470.78<br />
</td>
        <td style="text-align: center;">0.65<br />
</td>
        <td style="text-align: center;">down 4th<br />
</td>
        <td style="text-align: center;">v4<br />
</td>
        <td style="text-align: center;">Gv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">12<br />
</td>
        <td style="text-align: center;">514.29<br />
</td>
        <td style="text-align: center;">4:3<br />
</td>
        <td style="text-align: center;">498.04<br />
</td>
        <td style="text-align: center;">16.25<br />
</td>
        <td style="text-align: center;">4th<br />
</td>
        <td style="text-align: center;">4<br />
</td>
        <td style="text-align: center;">G<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">13<br />
</td>
        <td style="text-align: center;">557.14<br />
</td>
        <td style="text-align: center;">11:8<br />
</td>
        <td style="text-align: center;">551.32<br />
</td>
        <td style="text-align: center;">5.82<br />
</td>
        <td style="text-align: center;">up 4th<br />
</td>
        <td style="text-align: center;">^4<br />
</td>
        <td style="text-align: center;">G^<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">14<br />
</td>
        <td style="text-align: center;">600<br />
</td>
        <td style="text-align: center;">7:5<br />
</td>
        <td style="text-align: center;">582.51<br />
</td>
        <td style="text-align: center;">17.49<br />
</td>
        <td style="text-align: center;">double-up 4th, double-down 5th<br />
</td>
        <td style="text-align: center;">^^4, vv5<br />
</td>
        <td style="text-align: center;">G^^, vvA<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">15<br />
</td>
        <td style="text-align: center;">642.86<br />
</td>
        <td style="text-align: center;">16:11<br />
</td>
        <td style="text-align: center;">648.68<br />
</td>
        <td style="text-align: center;">-5.82<br />
</td>
        <td style="text-align: center;">down 5th<br />
</td>
        <td style="text-align: center;">v5<br />
</td>
        <td style="text-align: center;">Av<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">16<br />
</td>
        <td style="text-align: center;">685.71<br />
</td>
        <td style="text-align: center;">3:2<br />
</td>
        <td style="text-align: center;">701.96<br />
</td>
        <td style="text-align: center;">-16.25<br />
</td>
        <td style="text-align: center;">5th<br />
</td>
        <td style="text-align: center;">5<br />
</td>
        <td style="text-align: center;">A<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">17<br />
</td>
        <td style="text-align: center;">728.57<br />
</td>
        <td style="text-align: center;">32:21<br />
</td>
        <td style="text-align: center;">729.22<br />
</td>
        <td style="text-align: center;">-0.65<br />
</td>
        <td style="text-align: center;">up 5th<br />
</td>
        <td style="text-align: center;">^5<br />
</td>
        <td style="text-align: center;">A^<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">18<br />
</td>
        <td style="text-align: center;">771.43<br />
</td>
        <td style="text-align: center;">14:9<br />
</td>
        <td style="text-align: center;">764.92<br />
</td>
        <td style="text-align: center;">6.51<br />
</td>
        <td style="text-align: center;">double-up 5th, double-down 6th<br />
</td>
        <td style="text-align: center;">^^5, vv6<br />
</td>
        <td style="text-align: center;">A^^, Bvv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">19<br />
</td>
        <td style="text-align: center;">814.29<br />
</td>
        <td style="text-align: center;">5:8<br />
</td>
        <td style="text-align: center;">813.68<br />
</td>
        <td style="text-align: center;">0.61<br />
</td>
        <td style="text-align: center;">down 6th<br />
</td>
        <td style="text-align: center;">v6<br />
</td>
        <td style="text-align: center;">Bv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">20<br />
</td>
        <td style="text-align: center;">857.14<br />
</td>
        <td style="text-align: center;">18:11<br />
</td>
        <td style="text-align: center;">852.59<br />
</td>
        <td style="text-align: center;">4.55<br />
</td>
        <td style="text-align: center;">6th<br />
</td>
        <td style="text-align: center;">6<br />
</td>
        <td style="text-align: center;">B<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">21<br />
</td>
        <td style="text-align: center;">900<br />
</td>
        <td style="text-align: center;">5:3<br />
</td>
        <td style="text-align: center;">884.36<br />
</td>
        <td style="text-align: center;">15.64<br />
</td>
        <td style="text-align: center;">up 6th<br />
</td>
        <td style="text-align: center;">^6<br />
</td>
        <td style="text-align: center;">B^<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">22<br />
</td>
        <td style="text-align: center;">942.86<br />
</td>
        <td style="text-align: center;">12:7<br />
</td>
        <td style="text-align: center;">933.13<br />
</td>
        <td style="text-align: center;">9.73<br />
</td>
        <td style="text-align: center;">double-up 6th, double-down 7th<br />
</td>
        <td style="text-align: center;">^^6, vv7<br />
</td>
        <td style="text-align: center;">B^^, Cvv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">23<br />
</td>
        <td style="text-align: center;">985.71<br />
</td>
        <td style="text-align: center;">30:17<br />
</td>
        <td style="text-align: center;">983.31<br />
</td>
        <td style="text-align: center;">2.40<br />
</td>
        <td style="text-align: center;">down 7th<br />
</td>
        <td style="text-align: center;">v7<br />
</td>
        <td style="text-align: center;">Cv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">24<br />
</td>
        <td style="text-align: center;">1028.57<br />
</td>
        <td style="text-align: center;">20:11<br />
</td>
        <td style="text-align: center;">1035.00<br />
</td>
        <td style="text-align: center;">-6.43<br />
</td>
        <td style="text-align: center;">7th<br />
</td>
        <td style="text-align: center;">7<br />
</td>
        <td style="text-align: center;">C<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">25<br />
</td>
        <td style="text-align: center;">1071.42<br />
</td>
        <td style="text-align: center;">13:7<br />
</td>
        <td style="text-align: center;">1071.70<br />
</td>
        <td style="text-align: center;">-0.27<br />
</td>
        <td style="text-align: center;">up 7th<br />
</td>
        <td style="text-align: center;">^7<br />
</td>
        <td style="text-align: center;">C^<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">26<br />
</td>
        <td style="text-align: center;">1114.29<br />
</td>
        <td style="text-align: center;">40:21<br />
</td>
        <td style="text-align: center;">1115.53<br />
</td>
        <td style="text-align: center;">-1.24<br />
</td>
        <td style="text-align: center;">double-up 7th, double-down 8ve<br />
</td>
        <td style="text-align: center;">^^7, vv8<br />
</td>
        <td style="text-align: center;">C^^, Dvv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">27<br />
</td>
        <td style="text-align: center;">1157.14<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;">down 8ve<br />
</td>
        <td style="text-align: center;">v8<br />
</td>
        <td style="text-align: center;">Dv<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">28<br />
</td>
        <td style="text-align: center;">1200<br />
</td>
        <td style="text-align: center;">2:1<br />
</td>
        <td style="text-align: center;">1200<br />
</td>
        <td style="text-align: center;">0<br />
</td>
        <td style="text-align: center;">8ve<br />
</td>
        <td style="text-align: center;">8<br />
</td>
        <td style="text-align: center;">D<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Chord Names"></a><!-- ws:end:WikiTextHeadingRule:6 --><!-- ws:start:WikiTextAnchorRule:23:&lt;img src=&quot;/i/anchor.gif&quot; class=&quot;WikiAnchor&quot; alt=&quot;Anchor&quot; id=&quot;wikitext@@anchor@@Chord Names&quot; title=&quot;Anchor: Chord Names&quot;/&gt; --><a name="Chord Names"></a><!-- ws:end:WikiTextAnchorRule:23 -->Chord Names</h1>
 <br />
Ups and downs can be used to name 28edo chords. Because every interval is perfect, the quality can be omitted, and the words major, minor, augmented and diminished are never used.<br />
<br />
0-8-16 = C E G = C = C or C perfect<br />
0-7-16 = C Ev G = C(v3) = C down-three<br />
0-9-16 = C E^ G = C(^3) = C up-three<br />
0-8-15 = C E Gv = C(v5) = C down-five<br />
0-9-17 = C E^ G^ = C(^3,^5) = C up-three up-five<br />
<br />
0-8-16-24 = C E G B = C7 = C seven<br />
0-8-16-23 = C E G Bv = C(v7) = C down-seven<br />
0-7-16-24 = C Ev G B = C7(v3) = C seven down-three<br />
0-7-16-23 = C Ev G Bv = C.v7 = C dot down seven<br />
<br />
For a more complete list, see <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation#Chord%20names%20in%20other%20EDOs">Ups and Downs Notation - Chord names in other EDOs</a>.<br />
<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:8 --><span style="background-color: #ffffff;">Rank two temperaments</span></h1>
 <br />


<table class="wiki_table">
    <tr>
        <th>Periods<br />
per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Temperaments<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>3\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Negri">Negri</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>5\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Machine">Machine</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>9\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt%20family#Worschmidt">Worschmidt</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\28<br />
</td>
        <td><span style="background-color: #ffffff;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Thuja">Thuja</a></span><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>3\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>5\28<br />
</td>
        <td><a class="wiki_link" href="/antikythera">Antikythera</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>1\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>2\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Diminished#Demolished">Demolished</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>3\28<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>1\28<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a><br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>1\28<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:10 -->Commas</h1>
 28 EDO tempers out the following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/comma">comma</a>s. (Note: This assumes the val &lt; <a class="wiki_link" href="http://tel.wikispaces.com/-/28%2044%2065%2079%2097%20104/1%20%7C.%29%7C%7C~%20Comma%20%7C%7C~%20Monzo%20%7C%7C~%20Value%20%28Cents%29%20%7C%7C~%20Name%201%20%7C%7C~%20Name%202%20%7C%7C%7C%7C%3D%202187/2048">| | -11 7 &gt; ||&gt; 113.69 ||= Apotome ||= ||||= 648/625 || | 3 4 -4 &gt; ||&gt; 62.57 ||= Major Diesis ||= Diminished Comma ||||= 16875/16384 || | -14 3 4 &gt; ||&gt; 51.12 ||= Negri Comma ||= Double Augmentation Diesis ||||= || | 17 1 -8 &gt; ||&gt; 11.45 ||= Wuerschmidt Comma ||= ||||= 36/35 || | 2 2 -1 -1 &gt; ||&gt; 48.77 ||= Septimal Quarter Tone ||= ||||= 50/49 || | 1 0 2 -2 &gt; ||&gt; 34.98 ||= Tritonic Diesis ||= Jubilisma ||||= 3125/3087 || | 0 -2 5 -3 &gt; ||&gt; 21.18 ||= Gariboh ||= ||||= 126/125 || | 1 2 -3 1 &gt; ||&gt; 13.79 ||= Septimal Semicomma ||= Starling Comma ||||= 65625/65536 || | -16 1 5 1 &gt; ||&gt; 2.35 ||= Horwell ||= ||||= || | 47 -7 -7 -7 &gt; ||&gt; 0.34 ||= Akjaysma ||= 5\7 Octave Comma ||||= 176/175 || | 4 0 -2 -1 1 &gt; ||&gt; 9.86 ||= Valinorsma ||= ||||= 441/440 || | -3 2 -1 2 -1 &gt; ||&gt; 3.93 ||= Werckisma ||= ||||= 4000/3993 || | 5 -1 3 0 -3 &gt; ||&gt; 3.03 ||= Wizardharry ||= ||=Some scales= [[xenharmonic/machine5|machine5</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine6">machine6</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/machine11">machine11</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:12 -->Compositions</h1>
 <a class="wiki_link_ext" href="http://www.youtube.com/watch?v=26UpCbrb3mE" rel="nofollow">28 tone Prelude</a> by Kosmorksy</body></html>