2460edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 236681372 - Original comment: **
Wikispaces>xenwolf
**Imported revision 236760412 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-06-14 18:10:21 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-15 02:33:04 UTC</tt>.<br>
: The original revision id was <tt>236681372</tt>.<br>
: The original revision id was <tt>236760412</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.
As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.


2460 is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 41, 60, 82, 123, 164, 205, 246, 410, 492, 615, 820, and 1230. Of these, [[12edo]] is too well-known to need any introduction, [[41edo]] is an important system, and [[205edo]] has proponents such as [[Aaron Andrew Hunt]], who uses it as the default tuning for [[http://www.h-pi.com/theory/measurement3.html|Hi-pi Instruments]]. Aside from these, [[15edo]], [[20edo]], [[30edo]], [[60edo]], and [[164edo]] all have drawn some attention. Moreover a cent is exactly 2.05 minas, and a mem, 1/205 octaves, is exactly 12 minas.
2460 is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 41, 60, 82, 123, 164, 205, 246, 410, 492, 615, 820, and 1230. Of these, [[12edo]] is too well-known to need any introduction, [[41edo]] is an important system, and [[205edo]] has proponents such as [[Aaron Andrew Hunt]], who uses it as the default tuning for [[http://www.h-pi.com/theory/measurement3.html|Hi-pi Instruments]] (and as a unit: [[Mem]]). Aside from these, [[15edo]], [[20edo]], [[30edo]], [[60edo]], and [[164edo]] all have drawn some attention. Moreover a cent is exactly 2.05 minas, and a mem, 1/205 octaves, is exactly 12 minas.
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
Line 17: Line 17:
As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.&lt;br /&gt;
As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2460 is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 41, 60, 82, 123, 164, 205, 246, 410, 492, 615, 820, and 1230. Of these, &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt; is too well-known to need any introduction, &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt; is an important system, and &lt;a class="wiki_link" href="/205edo"&gt;205edo&lt;/a&gt; has proponents such as &lt;a class="wiki_link" href="/Aaron%20Andrew%20Hunt"&gt;Aaron Andrew Hunt&lt;/a&gt;, who uses it as the default tuning for &lt;a class="wiki_link_ext" href="http://www.h-pi.com/theory/measurement3.html" rel="nofollow"&gt;Hi-pi Instruments&lt;/a&gt;. Aside from these, &lt;a class="wiki_link" href="/15edo"&gt;15edo&lt;/a&gt;, &lt;a class="wiki_link" href="/20edo"&gt;20edo&lt;/a&gt;, &lt;a class="wiki_link" href="/30edo"&gt;30edo&lt;/a&gt;, &lt;a class="wiki_link" href="/60edo"&gt;60edo&lt;/a&gt;, and &lt;a class="wiki_link" href="/164edo"&gt;164edo&lt;/a&gt; all have drawn some attention. Moreover a cent is exactly 2.05 minas, and a mem, 1/205 octaves, is exactly 12 minas.&lt;/body&gt;&lt;/html&gt;</pre></div>
2460 is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 41, 60, 82, 123, 164, 205, 246, 410, 492, 615, 820, and 1230. Of these, &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt; is too well-known to need any introduction, &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt; is an important system, and &lt;a class="wiki_link" href="/205edo"&gt;205edo&lt;/a&gt; has proponents such as &lt;a class="wiki_link" href="/Aaron%20Andrew%20Hunt"&gt;Aaron Andrew Hunt&lt;/a&gt;, who uses it as the default tuning for &lt;a class="wiki_link_ext" href="http://www.h-pi.com/theory/measurement3.html" rel="nofollow"&gt;Hi-pi Instruments&lt;/a&gt; (and as a unit: &lt;a class="wiki_link" href="/Mem"&gt;Mem&lt;/a&gt;). Aside from these, &lt;a class="wiki_link" href="/15edo"&gt;15edo&lt;/a&gt;, &lt;a class="wiki_link" href="/20edo"&gt;20edo&lt;/a&gt;, &lt;a class="wiki_link" href="/30edo"&gt;30edo&lt;/a&gt;, &lt;a class="wiki_link" href="/60edo"&gt;60edo&lt;/a&gt;, and &lt;a class="wiki_link" href="/164edo"&gt;164edo&lt;/a&gt; all have drawn some attention. Moreover a cent is exactly 2.05 minas, and a mem, 1/205 octaves, is exactly 12 minas.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 02:33, 15 June 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author xenwolf and made on 2011-06-15 02:33:04 UTC.
The original revision id was 236760412.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 2460 equal division divides the octave into 2460 equal parts of 0.4878 cents each. It has been used in [[Sagittal notation]] to define the "olympian level" of JI notation, and has been proposed as the basis for a unit, the [[mina]], which could be used in place of the [[cent]]. It is uniquely consistent through to the 27-limit, which is not very remarkable in itself (388edo is the first such system), but what is remarkable is the degree of accuracy to which it represents the 27-limit intervals.

As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.

2460 is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 41, 60, 82, 123, 164, 205, 246, 410, 492, 615, 820, and 1230. Of these, [[12edo]] is too well-known to need any introduction, [[41edo]] is an important system, and [[205edo]] has proponents such as [[Aaron Andrew Hunt]], who uses it as the default tuning for [[http://www.h-pi.com/theory/measurement3.html|Hi-pi Instruments]] (and as a unit: [[Mem]]). Aside from these, [[15edo]], [[20edo]], [[30edo]], [[60edo]], and [[164edo]] all have drawn some attention. Moreover a cent is exactly 2.05 minas, and a mem, 1/205 octaves, is exactly 12 minas.

Original HTML content:

<html><head><title>2460edo</title></head><body>The 2460 equal division divides the octave into 2460 equal parts of 0.4878 cents each. It has been used in <a class="wiki_link" href="/Sagittal%20notation">Sagittal notation</a> to define the &quot;olympian level&quot; of JI notation, and has been proposed as the basis for a unit, the <a class="wiki_link" href="/mina">mina</a>, which could be used in place of the <a class="wiki_link" href="/cent">cent</a>. It is uniquely consistent through to the 27-limit, which is not very remarkable in itself (388edo is the first such system), but what is remarkable is the degree of accuracy to which it represents the 27-limit intervals.<br />
<br />
As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out 250047/250000, and in the 11-limit it tempers out 9801/9800. Beyond that, 10648/10647 in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.<br />
<br />
2460 is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 41, 60, 82, 123, 164, 205, 246, 410, 492, 615, 820, and 1230. Of these, <a class="wiki_link" href="/12edo">12edo</a> is too well-known to need any introduction, <a class="wiki_link" href="/41edo">41edo</a> is an important system, and <a class="wiki_link" href="/205edo">205edo</a> has proponents such as <a class="wiki_link" href="/Aaron%20Andrew%20Hunt">Aaron Andrew Hunt</a>, who uses it as the default tuning for <a class="wiki_link_ext" href="http://www.h-pi.com/theory/measurement3.html" rel="nofollow">Hi-pi Instruments</a> (and as a unit: <a class="wiki_link" href="/Mem">Mem</a>). Aside from these, <a class="wiki_link" href="/15edo">15edo</a>, <a class="wiki_link" href="/20edo">20edo</a>, <a class="wiki_link" href="/30edo">30edo</a>, <a class="wiki_link" href="/60edo">60edo</a>, and <a class="wiki_link" href="/164edo">164edo</a> all have drawn some attention. Moreover a cent is exactly 2.05 minas, and a mem, 1/205 octaves, is exactly 12 minas.</body></html>