Lumatone mapping for 34edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Keenan Pepper (talk | contribs)
Keenan Pepper (talk | contribs)
add into and another mapping
Line 1: Line 1:
34edo is an interesting case for [[Lumatone]] mappings, since ([[Lumatone mapping for 24edo|like 24edo]]), it is not generated by fifths and octaves, so the [[Standard Lumatone mapping for Pythagorean]] cannot be used.
A [[5L 3s]]-based mapping for [[34edo]]:
A [[5L 3s]]-based mapping for [[34edo]]:
{{Lumatone EDO mapping|n=34|start=-2|xstep=5|ystep=-2}}


{{Lumatone EDO mapping|n=34|start=-2|xstep=5|ystep=-2}}
A [[6L 1s]]-based mapping:
{{Lumatone EDO mapping|n=34|start=16|xstep=5|ystep=-1}}


[[Category:Lumatone mappings]]
[[Category:Lumatone mappings]]

Revision as of 18:41, 14 January 2022

34edo is an interesting case for Lumatone mappings, since (like 24edo), it is not generated by fifths and octaves, so the Standard Lumatone mapping for Pythagorean cannot be used.

A 5L 3s-based mapping for 34edo:

32
3
1
6
11
16
21
33
4
9
14
19
24
29
0
2
7
12
17
22
27
32
3
8
13
18
0
5
10
15
20
25
30
1
6
11
16
21
26
31
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
17
22
27
32
3
8
13
18
23
28
33
4
9
14
1
6
11
16
21
26
31
2
7
12
17
14
19
24
29
0
5
10
15
32
3
8
13
18
11
16

A 6L 1s-based mapping:

16
21
20
25
30
1
6
19
24
29
0
5
10
15
20
23
28
33
4
9
14
19
24
29
0
5
22
27
32
3
8
13
18
23
28
33
4
9
14
19
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
15
20
25
30
1
6
11
16
21
26
31
2
7
12
0
5
10
15
20
25
30
1
6
11
16
14
19
24
29
0
5
10
15
33
4
9
14
19
13
18