23edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>guest **Imported revision 239937109 - Original comment: ** |
Wikispaces>guest **Imported revision 239938199 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:guest|guest]] and made on <tt>2011-07-04 13: | : This revision was by author [[User:guest|guest]] and made on <tt>2011-07-04 13:56:21 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>239938199</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 17: | Line 17: | ||
However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the "anti-pentatonic") and 4 1 4 1 4 4 1 4 (the "quarter-tone" version of the Blackwood/[[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Rapoport]]/Wilson 13-EDO "subminor" scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a "4/3", we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale. | However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the "anti-pentatonic") and 4 1 4 1 4 4 1 4 (the "quarter-tone" version of the Blackwood/[[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Rapoport]]/Wilson 13-EDO "subminor" scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a "4/3", we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale. | ||
I would argue that the most significant modes of 23 edo are those of the 2 2 2 3 2 2 3 2 2 3 scale; | |||
This is derived from extending the ~1/3 comma tempered 13th harmonic, two of which add up to the h21 | |||
and three add up to the h17 almost perfectly (I discovered the temperament before I even realised 23 tone fits) | |||
The chord 8:13:21:34 is a fragment of the fibonacci sequence, and 16:21:26 is harmonically symmetrical | |||
(The chord 26:29:32 is also symmetric, but only 20 and 43 edo approximate the h29 as well) | |||
13:17:21 is symmetrical, and 17:21:26:32 has an interesting linear widening pattern, but more importantly, | |||
the h13 and h17 are both dual primes like 3&5 and 7&11 | |||
Thus I have named these 10 modes according to the Sephiroth as follows: | |||
2 2 2 3 2 2 3 2 2 3 - Mode Keter | |||
2 2 3 2 2 3 2 2 3 2 - Chesed | |||
2 3 2 2 3 2 2 3 2 2 - Netzach | |||
3 2 2 3 2 2 3 2 2 2 - Malkuth | |||
2 2 3 2 2 3 2 2 2 3 - Binah | |||
2 3 2 2 3 2 2 2 3 2 - Tiferet | |||
3 2 2 3 2 2 2 3 2 2 - Yesod | |||
2 2 3 2 2 2 3 2 2 3 - Chokmah | |||
2 3 2 2 2 3 2 2 3 2 - Gevurah | |||
3 2 2 2 3 2 2 3 2 2 - Keter | |||
-- Kosmorsky | |||
=Music= | =Music= | ||
Line 114: | Line 136: | ||
**2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1** | **2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1** | ||
2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 | 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 | ||
=Books= | =Books= | ||
Line 156: | Line 155: | ||
<br /> | <br /> | ||
However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the &quot;anti-pentatonic&quot;) and 4 1 4 1 4 4 1 4 (the &quot;quarter-tone&quot; version of the Blackwood/<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Rapoport</a>/Wilson 13-EDO &quot;subminor&quot; scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a &quot;4/3&quot;, we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale.<br /> | However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the &quot;anti-pentatonic&quot;) and 4 1 4 1 4 4 1 4 (the &quot;quarter-tone&quot; version of the Blackwood/<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Rapoport</a>/Wilson 13-EDO &quot;subminor&quot; scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a &quot;4/3&quot;, we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale.<br /> | ||
<br /> | |||
I would argue that the most significant modes of 23 edo are those of the 2 2 2 3 2 2 3 2 2 3 scale;<br /> | |||
This is derived from extending the ~1/3 comma tempered 13th harmonic, two of which add up to the h21<br /> | |||
and three add up to the h17 almost perfectly (I discovered the temperament before I even realised 23 tone fits)<br /> | |||
The chord 8:13:21:34 is a fragment of the fibonacci sequence, and 16:21:26 is harmonically symmetrical<br /> | |||
(The chord 26:29:32 is also symmetric, but only 20 and 43 edo approximate the h29 as well)<br /> | |||
13:17:21 is symmetrical, and 17:21:26:32 has an interesting linear widening pattern, but more importantly,<br /> | |||
the h13 and h17 are both dual primes like 3&amp;5 and 7&amp;11<br /> | |||
<br /> | |||
Thus I have named these 10 modes according to the Sephiroth as follows:<br /> | |||
2 2 2 3 2 2 3 2 2 3 - Mode Keter<br /> | |||
2 2 3 2 2 3 2 2 3 2 - Chesed<br /> | |||
2 3 2 2 3 2 2 3 2 2 - Netzach<br /> | |||
3 2 2 3 2 2 3 2 2 2 - Malkuth<br /> | |||
2 2 3 2 2 3 2 2 2 3 - Binah<br /> | |||
2 3 2 2 3 2 2 2 3 2 - Tiferet<br /> | |||
3 2 2 3 2 2 2 3 2 2 - Yesod<br /> | |||
2 2 3 2 2 2 3 2 2 3 - Chokmah<br /> | |||
2 3 2 2 2 3 2 2 3 2 - Gevurah<br /> | |||
3 2 2 2 3 2 2 3 2 2 - Keter<br /> | |||
<br /> | |||
-- Kosmorsky<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:2 -->Music</h1> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:2 -->Music</h1> | ||
Line 500: | Line 521: | ||
<strong>2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1</strong><br /> | <strong>2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1</strong><br /> | ||
2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1<br /> | 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Books"></a><!-- ws:end:WikiTextHeadingRule:14 -->Books</h1> | <!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Books"></a><!-- ws:end:WikiTextHeadingRule:14 -->Books</h1> |
Revision as of 13:56, 4 July 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author guest and made on 2011-07-04 13:56:21 UTC.
- The original revision id was 239938199.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #007a1b;"><span style="background-color: #000000; color: #009927; font-size: 109%;">23 tone equal temperament</span></span>= 23et, or 23-EDO, is a tuning system which divides the [[octave]] into 23 equal parts of approximately 52.173913 cents. It has good approximations for [[5_3|5/3]], [[11_7|11/7]], 13 and 17, allowing it to represent the 2.5/3.11/7.13.17 [[just intonation subgroup]]. If to this subgroup is added the commas of [[17-limit]] [[46edo|46et]], the larger 17-limit [[k*N subgroups|2*23 subgroup]] 2.9.15.21.33.13.17 is obtained. This is the largest subgroup on which 23 has the same tuning and commas as does 17-limit 46, and may be regarded as a basis for analyzing the harmony of 23-EDO so far as approximations to just intervals goes. 23-EDO was proposed by ethnomusicologist [[http://en.wikipedia.org/wiki/Erich_von_Hornbostel|Erich von Hornbostel]] as the result of continuing a circle of "blown" fifths of ~678-cent fifths that (he argued) resulted from "overblowing" a bamboo pipe. 23-EDO is also significant in that it is the largest EDO that fails to approximate the 3rd, 5th, and 7th harmonics within 20 cents, which makes it well-suited for musicians seeking to explore unusual harmonic territory. Oddly, despite the fact that it fails to approximate these harmonics, it approximates the intervals between them (5/3, 7/3, and 7/5) very well. The lowest harmonics well-approximated by 23-EDO are 13, 17, 21, and 23. Like 9-EDO, 16-EDO, and 25-EDO, one way to treat 23-EDO is as a Pelogic temperament, tempering out the "comma" of 135/128 and equating three sharp 4/3's with 5/1 (related to the Armodue system). This means mapping 3/2 to 13 degrees of 23, and results in a 7-note "anti-diatonic" scale of 3 3 4 3 3 3 4 (in steps of 23-EDO), which extends to 9 notes (3 3 3 1 3 3 3 3 1). However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the "anti-pentatonic") and 4 1 4 1 4 4 1 4 (the "quarter-tone" version of the Blackwood/[[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Rapoport]]/Wilson 13-EDO "subminor" scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a "4/3", we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale. I would argue that the most significant modes of 23 edo are those of the 2 2 2 3 2 2 3 2 2 3 scale; This is derived from extending the ~1/3 comma tempered 13th harmonic, two of which add up to the h21 and three add up to the h17 almost perfectly (I discovered the temperament before I even realised 23 tone fits) The chord 8:13:21:34 is a fragment of the fibonacci sequence, and 16:21:26 is harmonically symmetrical (The chord 26:29:32 is also symmetric, but only 20 and 43 edo approximate the h29 as well) 13:17:21 is symmetrical, and 17:21:26:32 has an interesting linear widening pattern, but more importantly, the h13 and h17 are both dual primes like 3&5 and 7&11 Thus I have named these 10 modes according to the Sephiroth as follows: 2 2 2 3 2 2 3 2 2 3 - Mode Keter 2 2 3 2 2 3 2 2 3 2 - Chesed 2 3 2 2 3 2 2 3 2 2 - Netzach 3 2 2 3 2 2 3 2 2 2 - Malkuth 2 2 3 2 2 3 2 2 2 3 - Binah 2 3 2 2 3 2 2 2 3 2 - Tiferet 3 2 2 3 2 2 2 3 2 2 - Yesod 2 2 3 2 2 2 3 2 2 3 - Chokmah 2 3 2 2 2 3 2 2 3 2 - Gevurah 3 2 2 2 3 2 2 3 2 2 - Keter -- Kosmorsky =Music= [[http://home.vicnet.net.au/%7Eepoetry/family.mp3|The Family Supper]] by [[Warren Burt]] [[http://www.youtube.com/watch?v=Hqst8MaRiYM|Icositriphonic Heptatonic MOS]] by [[Igliashon Jones]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Igs/City%20Of%20The%20Asleep%20-%20His%20Wandering%20Kinship%20with%20Ashes.mp3|His Wandering Kinship with Ashes]] by Iglashion Jones [[http://www.nonoctave.com/tunes/CosmicChamber.mp3|Cosmic Chamber]] by [[X. J. Scott]] [[http://www.nonoctave.com/tunes/Daisies.mp3|Daisies on the Beach]] by X. J. Scott <span style="background-attachment: initial; background-clip: initial; background-color: initial; background-origin: initial; background-position: 100% 50%; background-repeat: no-repeat no-repeat; cursor: pointer; padding-right: 10px;">[[http://www.akjmusic.com/audio/boogie_pie.mp3|Boogie Pie]]</span>by [[Aaron Krister Johnson]] [[http://clones.soonlabel.com/public/micro/23edo/daily20110619_23edo_23_chilled.mp3|23 Chilled]] by [[Chris Vaisvil]] //Allegro Moderato// by Easley Blackwood ==Intervals== || [[Degree]]s of 23-EDO || [[Cent]]s value || || 0 || 0 || || 1 || 52.1739 || || 2 || 104.3478 || || 3 || 156.5217 || || 4 || 208.6957 || || 5 || 260.8696 || || 6 || 313.0435 || || 7 || 365.2174 || || 8 || 417.3913 || || 9 || 469.5652 || || 10 || 521.7391 || || 11 || 573.913 || || 12 || 626.087 || || 13 || 678.2609 || || 14 || 730.4348 || || 15 || 782.6087 || || 16 || 834.7826 || || 17 || 886.9565 || || 18 || 939.1304 || || 19 || 991.3043 || || 20 || 1043.4783 || || 21 || 1095.6522 || || 22 || 1147.8261 || [[image:Ciclo_Icositrifonía.png width="492" height="490" caption="Intervallic Cycle of 23 steps Equal per Octave"]] == == ==Commas== 23 EDO tempers out the following commas. (Note: This assumes the val < 23 36 53 65 80 85 |.) Also note the discussion above, where there are some commas mentioned that are not in the standard comma list (e.g., 28/27). ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 || ||= 135/128 ||< | -7 3 1 > ||> 92.18 ||= Major Chroma ||= Major Limma ||= Pelogic Comma || ||= 15625/15552 ||< | -6 -5 6 > ||> 8.11 ||= Kleisma ||= Semicomma Majeur ||= || ||= 36/35 ||< | 2 2 -1 -1 > ||> 48.77 ||= Septimal Quarter Tone ||= ||= || ||= 525/512 ||< | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= Avicenna's Enharmonic Diesis ||= || ||= 4000/3969 ||< | 5 -4 3 -2 > ||> 13.47 ||= Octagar ||= ||= || ||= 6144/6125 ||< | 11 1 -3 -2 > ||> 5.36 ||= Porwell ||= ||= || ||= 100/99 ||< | 2 -2 2 0 -1 > ||> 17.40 ||= Ptolemisma ||= ||= || ||= 441/440 ||< | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||= ||= || ===INSTRUMENTS=== [[image:Icositriphonic_Bass.JPG width="594" height="216"]] //An Icositriphonic Bass. 23-EDO Bass by Tútim Deft Wafil.// [[image:Icositriphonic_Guitar.PNG width="601" height="305"]] //An Icositriphonic 8-string Guitar. 23-EDO Guitar by Ron Sword.// ==**23 tone [[Equal Modes]]:**== 10 10 3 9 9 5 8 8 7 7 7 7 2 7 2 7 7 6 6 6 5 6 5 6 6 5 4 5 5 4 5 4 5 4 5 7 1 7 7 1 7 1 7 1 7 5 5 5 5 3 5 3 5 5 5 4 4 4 4 4 3 4 3 4 4 4 4 5 1 5 1 5 1 5 3 3 3 5 3 3 3 4 3 3 3 3 3 4 3 4 3 3 4 3 3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 3 3 3 4 3 4 3 2 5 2 5 2 5 2 4 1 4 4 1 4 4 1 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 **3 3 3 1 3 3 3 3 1** 3 3 1 3 3 3 1 3 3 3 2 3 2 3 2 3 2 3 2 2 3 2 2 3 2 2 2 3 **3 1 3 1 3 1 3 1 3 1 3** 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 **2 1 2 2 1 2 2 1 2 2 1 2 2 1** 1 1 1 4 1 1 1 1 4 1 1 1 1 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 **2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1** 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 =Books= [[image:Libro_Icositrifónico.PNG width="242" height="294"]] =Keyboards= [[image:Teclado_Icositrifónico.PNG width="567" height="297" caption="A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems"]]
Original HTML content:
<html><head><title>23edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x23 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #007a1b;"><span style="background-color: #000000; color: #009927; font-size: 109%;">23 tone equal temperament</span></span></h1> <br /> 23et, or 23-EDO, is a tuning system which divides the <a class="wiki_link" href="/octave">octave</a> into 23 equal parts of approximately 52.173913 cents. It has good approximations for <a class="wiki_link" href="/5_3">5/3</a>, <a class="wiki_link" href="/11_7">11/7</a>, 13 and 17, allowing it to represent the 2.5/3.11/7.13.17 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. If to this subgroup is added the commas of <a class="wiki_link" href="/17-limit">17-limit</a> <a class="wiki_link" href="/46edo">46et</a>, the larger 17-limit <a class="wiki_link" href="/k%2AN%20subgroups">2*23 subgroup</a> 2.9.15.21.33.13.17 is obtained. This is the largest subgroup on which 23 has the same tuning and commas as does 17-limit 46, and may be regarded as a basis for analyzing the harmony of 23-EDO so far as approximations to just intervals goes.<br /> <br /> 23-EDO was proposed by ethnomusicologist <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Erich_von_Hornbostel" rel="nofollow">Erich von Hornbostel</a> as the result of continuing a circle of "blown" fifths of ~678-cent fifths that (he argued) resulted from "overblowing" a bamboo pipe.<br /> <br /> 23-EDO is also significant in that it is the largest EDO that fails to approximate the 3rd, 5th, and 7th harmonics within 20 cents, which makes it well-suited for musicians seeking to explore unusual harmonic territory. Oddly, despite the fact that it fails to approximate these harmonics, it approximates the intervals between them (5/3, 7/3, and 7/5) very well. The lowest harmonics well-approximated by 23-EDO are 13, 17, 21, and 23.<br /> <br /> Like 9-EDO, 16-EDO, and 25-EDO, one way to treat 23-EDO is as a Pelogic temperament, tempering out the "comma" of 135/128 and equating three sharp 4/3's with 5/1 (related to the Armodue system). This means mapping 3/2 to 13 degrees of 23, and results in a 7-note "anti-diatonic" scale of 3 3 4 3 3 3 4 (in steps of 23-EDO), which extends to 9 notes (3 3 3 1 3 3 3 3 1).<br /> <br /> However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the "anti-pentatonic") and 4 1 4 1 4 4 1 4 (the "quarter-tone" version of the Blackwood/<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Rapoport</a>/Wilson 13-EDO "subminor" scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a "4/3", we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale.<br /> <br /> I would argue that the most significant modes of 23 edo are those of the 2 2 2 3 2 2 3 2 2 3 scale;<br /> This is derived from extending the ~1/3 comma tempered 13th harmonic, two of which add up to the h21<br /> and three add up to the h17 almost perfectly (I discovered the temperament before I even realised 23 tone fits)<br /> The chord 8:13:21:34 is a fragment of the fibonacci sequence, and 16:21:26 is harmonically symmetrical<br /> (The chord 26:29:32 is also symmetric, but only 20 and 43 edo approximate the h29 as well)<br /> 13:17:21 is symmetrical, and 17:21:26:32 has an interesting linear widening pattern, but more importantly,<br /> the h13 and h17 are both dual primes like 3&5 and 7&11<br /> <br /> Thus I have named these 10 modes according to the Sephiroth as follows:<br /> 2 2 2 3 2 2 3 2 2 3 - Mode Keter<br /> 2 2 3 2 2 3 2 2 3 2 - Chesed<br /> 2 3 2 2 3 2 2 3 2 2 - Netzach<br /> 3 2 2 3 2 2 3 2 2 2 - Malkuth<br /> 2 2 3 2 2 3 2 2 2 3 - Binah<br /> 2 3 2 2 3 2 2 2 3 2 - Tiferet<br /> 3 2 2 3 2 2 2 3 2 2 - Yesod<br /> 2 2 3 2 2 2 3 2 2 3 - Chokmah<br /> 2 3 2 2 2 3 2 2 3 2 - Gevurah<br /> 3 2 2 2 3 2 2 3 2 2 - Keter<br /> <br /> -- Kosmorsky<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:2 -->Music</h1> <a class="wiki_link_ext" href="http://home.vicnet.net.au/%7Eepoetry/family.mp3" rel="nofollow">The Family Supper</a> by <a class="wiki_link" href="/Warren%20Burt">Warren Burt</a><br /> <a class="wiki_link_ext" href="http://www.youtube.com/watch?v=Hqst8MaRiYM" rel="nofollow">Icositriphonic Heptatonic MOS</a> by <a class="wiki_link" href="/Igliashon%20Jones">Igliashon Jones</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Igs/City%20Of%20The%20Asleep%20-%20His%20Wandering%20Kinship%20with%20Ashes.mp3" rel="nofollow">His Wandering Kinship with Ashes</a> by Iglashion Jones<br /> <a class="wiki_link_ext" href="http://www.nonoctave.com/tunes/CosmicChamber.mp3" rel="nofollow">Cosmic Chamber</a> by <a class="wiki_link" href="/X.%20J.%20Scott">X. J. Scott</a><br /> <a class="wiki_link_ext" href="http://www.nonoctave.com/tunes/Daisies.mp3" rel="nofollow">Daisies on the Beach</a> by X. J. Scott<br /> <span style="background-attachment: initial; background-clip: initial; background-color: initial; background-origin: initial; background-position: 100% 50%; background-repeat: no-repeat no-repeat; cursor: pointer; padding-right: 10px;"><a class="wiki_link_ext" href="http://www.akjmusic.com/audio/boogie_pie.mp3" rel="nofollow">Boogie Pie</a></span>by <a class="wiki_link" href="/Aaron%20Krister%20Johnson">Aaron Krister Johnson</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/23edo/daily20110619_23edo_23_chilled.mp3" rel="nofollow">23 Chilled</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a><br /> <br /> <em>Allegro Moderato</em> by Easley Blackwood<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="Music-Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h2> <table class="wiki_table"> <tr> <td><a class="wiki_link" href="/Degree">Degree</a>s of 23-EDO<br /> </td> <td><a class="wiki_link" href="/Cent">Cent</a>s value<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> </tr> <tr> <td>1<br /> </td> <td>52.1739<br /> </td> </tr> <tr> <td>2<br /> </td> <td>104.3478<br /> </td> </tr> <tr> <td>3<br /> </td> <td>156.5217<br /> </td> </tr> <tr> <td>4<br /> </td> <td>208.6957<br /> </td> </tr> <tr> <td>5<br /> </td> <td>260.8696<br /> </td> </tr> <tr> <td>6<br /> </td> <td>313.0435<br /> </td> </tr> <tr> <td>7<br /> </td> <td>365.2174<br /> </td> </tr> <tr> <td>8<br /> </td> <td>417.3913<br /> </td> </tr> <tr> <td>9<br /> </td> <td>469.5652<br /> </td> </tr> <tr> <td>10<br /> </td> <td>521.7391<br /> </td> </tr> <tr> <td>11<br /> </td> <td>573.913<br /> </td> </tr> <tr> <td>12<br /> </td> <td>626.087<br /> </td> </tr> <tr> <td>13<br /> </td> <td>678.2609<br /> </td> </tr> <tr> <td>14<br /> </td> <td>730.4348<br /> </td> </tr> <tr> <td>15<br /> </td> <td>782.6087<br /> </td> </tr> <tr> <td>16<br /> </td> <td>834.7826<br /> </td> </tr> <tr> <td>17<br /> </td> <td>886.9565<br /> </td> </tr> <tr> <td>18<br /> </td> <td>939.1304<br /> </td> </tr> <tr> <td>19<br /> </td> <td>991.3043<br /> </td> </tr> <tr> <td>20<br /> </td> <td>1043.4783<br /> </td> </tr> <tr> <td>21<br /> </td> <td>1095.6522<br /> </td> </tr> <tr> <td>22<br /> </td> <td>1147.8261<br /> </td> </tr> </table> <!-- ws:start:WikiTextLocalImageRule:292:<img src="/file/view/Ciclo_Icositrifon%C3%ADa.png/255957914/492x490/Ciclo_Icositrifon%C3%ADa.png" alt="Intervallic Cycle of 23 steps Equal per Octave" title="Intervallic Cycle of 23 steps Equal per Octave" style="height: 490px; width: 492px;" /> --><table class="captionBox"><tr><td class="captionedImage"><img src="/file/view/Ciclo_Icositrifon%C3%ADa.png/255957914/492x490/Ciclo_Icositrifon%C3%ADa.png" alt="Ciclo_Icositrifonía.png" title="Ciclo_Icositrifonía.png" style="height: 490px; width: 492px;" /></td></tr><tr><td class="imageCaption">Intervallic Cycle of 23 steps Equal per Octave</td></tr></table><!-- ws:end:WikiTextLocalImageRule:292 --><br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h2> <!-- ws:start:WikiTextHeadingRule:8:<h2> --><h2 id="toc4"><a name="Music-Commas"></a><!-- ws:end:WikiTextHeadingRule:8 -->Commas</h2> 23 EDO tempers out the following commas. (Note: This assumes the val < 23 36 53 65 80 85 |.) Also note the discussion above, where there are some commas mentioned that are not in the standard comma list (e.g., 28/27).<br /> <table class="wiki_table"> <tr> <th>Comma<br /> </th> <th>Monzo<br /> </th> <th>Value (Cents)<br /> </th> <th>Name 1<br /> </th> <th>Name 2<br /> </th> <th>Name 3<br /> </th> </tr> <tr> <td style="text-align: center;">135/128<br /> </td> <td style="text-align: left;">| -7 3 1 ><br /> </td> <td style="text-align: right;">92.18<br /> </td> <td style="text-align: center;">Major Chroma<br /> </td> <td style="text-align: center;">Major Limma<br /> </td> <td style="text-align: center;">Pelogic Comma<br /> </td> </tr> <tr> <td style="text-align: center;">15625/15552<br /> </td> <td style="text-align: left;">| -6 -5 6 ><br /> </td> <td style="text-align: right;">8.11<br /> </td> <td style="text-align: center;">Kleisma<br /> </td> <td style="text-align: center;">Semicomma Majeur<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">36/35<br /> </td> <td style="text-align: left;">| 2 2 -1 -1 ><br /> </td> <td style="text-align: right;">48.77<br /> </td> <td style="text-align: center;">Septimal Quarter Tone<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">525/512<br /> </td> <td style="text-align: left;">| -9 1 2 1 ><br /> </td> <td style="text-align: right;">43.41<br /> </td> <td style="text-align: center;">Avicennma<br /> </td> <td style="text-align: center;">Avicenna's Enharmonic Diesis<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">4000/3969<br /> </td> <td style="text-align: left;">| 5 -4 3 -2 ><br /> </td> <td style="text-align: right;">13.47<br /> </td> <td style="text-align: center;">Octagar<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">6144/6125<br /> </td> <td style="text-align: left;">| 11 1 -3 -2 ><br /> </td> <td style="text-align: right;">5.36<br /> </td> <td style="text-align: center;">Porwell<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">100/99<br /> </td> <td style="text-align: left;">| 2 -2 2 0 -1 ><br /> </td> <td style="text-align: right;">17.40<br /> </td> <td style="text-align: center;">Ptolemisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">441/440<br /> </td> <td style="text-align: left;">| -3 2 -1 2 -1 ><br /> </td> <td style="text-align: right;">3.93<br /> </td> <td style="text-align: center;">Werckisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:10:<h3> --><h3 id="toc5"><a name="Music-Commas-INSTRUMENTS"></a><!-- ws:end:WikiTextHeadingRule:10 -->INSTRUMENTS</h3> <!-- ws:start:WikiTextLocalImageRule:293:<img src="/file/view/Icositriphonic_Bass.JPG/206711470/594x216/Icositriphonic_Bass.JPG" alt="" title="" style="height: 216px; width: 594px;" /> --><img src="/file/view/Icositriphonic_Bass.JPG/206711470/594x216/Icositriphonic_Bass.JPG" alt="Icositriphonic_Bass.JPG" title="Icositriphonic_Bass.JPG" style="height: 216px; width: 594px;" /><!-- ws:end:WikiTextLocalImageRule:293 --><br /> <em>An Icositriphonic Bass. 23-EDO Bass by Tútim Deft Wafil.</em><br /> <br /> <!-- ws:start:WikiTextLocalImageRule:294:<img src="/file/view/Icositriphonic_Guitar.PNG/206712964/601x305/Icositriphonic_Guitar.PNG" alt="" title="" style="height: 305px; width: 601px;" /> --><img src="/file/view/Icositriphonic_Guitar.PNG/206712964/601x305/Icositriphonic_Guitar.PNG" alt="Icositriphonic_Guitar.PNG" title="Icositriphonic_Guitar.PNG" style="height: 305px; width: 601px;" /><!-- ws:end:WikiTextLocalImageRule:294 --><br /> <em>An Icositriphonic 8-string Guitar. 23-EDO Guitar by Ron Sword.</em><br /> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h2> --><h2 id="toc6"><a name="Music-23 tone Equal Modes:"></a><!-- ws:end:WikiTextHeadingRule:12 --><strong>23 tone <a class="wiki_link" href="/Equal%20Modes">Equal Modes</a>:</strong></h2> 10 10 3<br /> 9 9 5<br /> 8 8 7<br /> 7 7 7 2<br /> 7 2 7 7<br /> 6 6 6 5<br /> 6 5 6 6<br /> 5 4 5 5 4<br /> 5 4 5 4 5<br /> 7 1 7 7 1<br /> 7 1 7 1 7<br /> 5 5 5 5 3<br /> 5 3 5 5 5<br /> 4 4 4 4 4 3<br /> 4 3 4 4 4 4<br /> 5 1 5 1 5 1 5<br /> 3 3 3 5 3 3 3<br /> 4 3 3 3 3 3 4<br /> 3 4 3 3 4 3 3<br /> 3 3 4 3 3 3 4<br /> 3 3 3 4 3 3 4<br /> 3 3 3 4 3 4 3<br /> 2 5 2 5 2 5 2<br /> 4 1 4 4 1 4 4 1<br /> 3 3 3 3 3 3 3 2<br /> 3 2 3 3 3 3 3 3<br /> <strong>3 3 3 1 3 3 3 3 1</strong><br /> 3 3 1 3 3 3 1 3 3<br /> 3 2 3 2 3 2 3 2 3<br /> 2 2 3 2 2 3 2 2 2 3<br /> <strong>3 1 3 1 3 1 3 1 3 1 3</strong><br /> 2 2 2 1 2 2 2 1 2 2 2 2 1<br /> 2 2 1 2 2 1 2 2 1 2 2 1 2 1<br /> <strong>2 1 2 2 1 2 2 1 2 2 1 2 2 1</strong><br /> 1 1 1 4 1 1 1 1 4 1 1 1 1 4<br /> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2<br /> <strong>2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1</strong><br /> 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1<br /> <br /> <!-- ws:start:WikiTextHeadingRule:14:<h1> --><h1 id="toc7"><a name="Books"></a><!-- ws:end:WikiTextHeadingRule:14 -->Books</h1> <!-- ws:start:WikiTextLocalImageRule:295:<img src="/file/view/Libro_Icositrif%C3%B3nico.PNG/163031733/242x294/Libro_Icositrif%C3%B3nico.PNG" alt="" title="" style="height: 294px; width: 242px;" /> --><img src="/file/view/Libro_Icositrif%C3%B3nico.PNG/163031733/242x294/Libro_Icositrif%C3%B3nico.PNG" alt="Libro_Icositrifónico.PNG" title="Libro_Icositrifónico.PNG" style="height: 294px; width: 242px;" /><!-- ws:end:WikiTextLocalImageRule:295 --><br /> <br /> <!-- ws:start:WikiTextHeadingRule:16:<h1> --><h1 id="toc8"><a name="Keyboards"></a><!-- ws:end:WikiTextHeadingRule:16 -->Keyboards</h1> <br /> <!-- ws:start:WikiTextLocalImageRule:296:<img src="/file/view/Teclado_Icositrif%C3%B3nico.PNG/258408436/567x297/Teclado_Icositrif%C3%B3nico.PNG" alt="A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems" title="A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems" style="height: 297px; width: 567px;" /> --><table class="captionBox"><tr><td class="captionedImage"><img src="/file/view/Teclado_Icositrif%C3%B3nico.PNG/258408436/567x297/Teclado_Icositrif%C3%B3nico.PNG" alt="Teclado_Icositrifónico.PNG" title="Teclado_Icositrifónico.PNG" style="height: 297px; width: 567px;" /></td></tr><tr><td class="imageCaption">A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems</td></tr></table><!-- ws:end:WikiTextLocalImageRule:296 --></body></html>