17-limit: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>phylingual
**Imported revision 334260510 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
In 17-limit [[Just_intonation|Just Intonation]], all ratios in the system will contain no primes higher than 17. The 17-limit adds to the [[13-limit|13-limit]] a "minor ninth" of about 105¢ -- [[17/16|17/16]] -- and several other intervals between the 17th overtone and the lower ones.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-12 20:11:48 UTC</tt>.<br>
: The original revision id was <tt>334260510</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">In 17-limit [[Just Intonation]], all ratios in the system will contain no primes higher than 17. The 17-limit adds to the [[13-limit]] a "minor ninth" of about 105¢ -- [[17_16|17/16]] -- and several other intervals between the 17th overtone and the lower ones.


==17-limit Intervals==  
==17-limit Intervals==
||~ Ratio ||~ Cents Value ||~ Name ||
|| [[18_17|18/17]] || 98.955 || small septendecimal semitone ||
|| [[17_16|17/16]] || 104.955 || large septendecimal semitone ||
|| [[17_15|17/15]] || 216.687 || septendecimal whole tone ||
|| [[20_17|20/17]] || 281.358 || septendecimal minor third ||
|| [[17_14|17/14]] || 336.130 || septendecimal supraminor third ||
|| [[21_17|21/17]] || 365.825 || septendecimal submajor third ||
|| [[22_17|22/17]] || 446.363 || septendecimal supermajor third ||
|| [[17_13|17/13]] || 464.428 || septendecimal sub-fourth ||
|| [[24_17|24/17]] || 597.000 || 1st septendecimal tritone ||
|| [[17_12|17/12]] || 603.000 || 2nd septendecimal tritone ||
|| [[26_17|26/17]] || 735.572 || septendecimal super-fifth ||
|| [[17_11|17/11]] || 753.637 || septendecimal subminor sixth ||
|| [[28_17|28/17]] || 863.870 || septendecimal submajor sixth ||
|| [[17_10|17/10]] || 918.642 || septendecimal major sixth ||
|| [[30_17|30/17]] || 983.313 || septendecimal minor seventh ||
|| [[32_17|32/17]] || 1095.045 || small septendecimal major seventh ||
|| [[17_9|17/9]] || 1101.045 || large septendecimal major seventh ||


see [[Harmonic Limit]], [[seventeen limit tetrads]]</pre></div>
{| class="wikitable"
<h4>Original HTML content:</h4>
|-
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;17-limit&lt;/title&gt;&lt;/head&gt;&lt;body&gt;In 17-limit &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt;, all ratios in the system will contain no primes higher than 17. The 17-limit adds to the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; a &amp;quot;minor ninth&amp;quot; of about 105¢ -- &lt;a class="wiki_link" href="/17_16"&gt;17/16&lt;/a&gt; -- and several other intervals between the 17th overtone and the lower ones.&lt;br /&gt;
! | Ratio
&lt;br /&gt;
! | Cents Value
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-17-limit Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;17-limit Intervals&lt;/h2&gt;
! | Name
|-
| | [[18/17|18/17]]
| | 98.955
| | small septendecimal semitone
|-
| | [[17/16|17/16]]
| | 104.955
| | large septendecimal semitone
|-
| | [[17/15|17/15]]
| | 216.687
| | septendecimal whole tone
|-
| | [[20/17|20/17]]
| | 281.358
| | septendecimal minor third
|-
| | [[17/14|17/14]]
| | 336.130
| | septendecimal supraminor third
|-
| | [[21/17|21/17]]
| | 365.825
| | septendecimal submajor third
|-
| | [[22/17|22/17]]
| | 446.363
| | septendecimal supermajor third
|-
| | [[17/13|17/13]]
| | 464.428
| | septendecimal sub-fourth
|-
| | [[24/17|24/17]]
| | 597.000
| | 1st septendecimal tritone
|-
| | [[17/12|17/12]]
| | 603.000
| | 2nd septendecimal tritone
|-
| | [[26/17|26/17]]
| | 735.572
| | septendecimal super-fifth
|-
| | [[17/11|17/11]]
| | 753.637
| | septendecimal subminor sixth
|-
| | [[28/17|28/17]]
| | 863.870
| | septendecimal submajor sixth
|-
| | [[17/10|17/10]]
| | 918.642
| | septendecimal major sixth
|-
| | [[30/17|30/17]]
| | 983.313
| | septendecimal minor seventh
|-
| | [[32/17|32/17]]
| | 1095.045
| | small septendecimal major seventh
|-
| | [[17/9|17/9]]
| | 1101.045
| | large septendecimal major seventh
|}


&lt;table class="wiki_table"&gt;
see [[Harmonic_Limit|Harmonic Limit]], [[seventeen_limit_tetrads|seventeen limit tetrads]]      [[Category:17-limit]]
    &lt;tr&gt;
[[Category:limit]]
        &lt;th&gt;Ratio&lt;br /&gt;
[[Category:prime_limit]]
&lt;/th&gt;
[[Category:rank_7]]
        &lt;th&gt;Cents Value&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Name&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/18_17"&gt;18/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;98.955&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;small septendecimal semitone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_16"&gt;17/16&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104.955&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;large septendecimal semitone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_15"&gt;17/15&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216.687&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal whole tone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/20_17"&gt;20/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;281.358&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal minor third&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_14"&gt;17/14&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;336.130&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal supraminor third&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/21_17"&gt;21/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;365.825&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal submajor third&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/22_17"&gt;22/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;446.363&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal supermajor third&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_13"&gt;17/13&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;464.428&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal sub-fourth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/24_17"&gt;24/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;597.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1st septendecimal tritone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_12"&gt;17/12&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;603.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2nd septendecimal tritone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/26_17"&gt;26/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;735.572&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal super-fifth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_11"&gt;17/11&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;753.637&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal subminor sixth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/28_17"&gt;28/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;863.870&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal submajor sixth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_10"&gt;17/10&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;918.642&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal major sixth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/30_17"&gt;30/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;983.313&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septendecimal minor seventh&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/32_17"&gt;32/17&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1095.045&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;small septendecimal major seventh&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/17_9"&gt;17/9&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1101.045&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;large septendecimal major seventh&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
see &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;Harmonic Limit&lt;/a&gt;, &lt;a class="wiki_link" href="/seventeen%20limit%20tetrads"&gt;seventeen limit tetrads&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

In 17-limit Just Intonation, all ratios in the system will contain no primes higher than 17. The 17-limit adds to the 13-limit a "minor ninth" of about 105¢ -- 17/16 -- and several other intervals between the 17th overtone and the lower ones.

17-limit Intervals

Ratio Cents Value Name
18/17 98.955 small septendecimal semitone
17/16 104.955 large septendecimal semitone
17/15 216.687 septendecimal whole tone
20/17 281.358 septendecimal minor third
17/14 336.130 septendecimal supraminor third
21/17 365.825 septendecimal submajor third
22/17 446.363 septendecimal supermajor third
17/13 464.428 septendecimal sub-fourth
24/17 597.000 1st septendecimal tritone
17/12 603.000 2nd septendecimal tritone
26/17 735.572 septendecimal super-fifth
17/11 753.637 septendecimal subminor sixth
28/17 863.870 septendecimal submajor sixth
17/10 918.642 septendecimal major sixth
30/17 983.313 septendecimal minor seventh
32/17 1095.045 small septendecimal major seventh
17/9 1101.045 large septendecimal major seventh

see Harmonic Limit, seventeen limit tetrads