Ed12: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''Ed12''' means '''Division of the Twelfth Harmonic (12/1) into n equal parts'''. = Division of the twelfth harmonic into n equal parts = The twelfth harmonic is particularl..." |
No edit summary |
||
Line 2: | Line 2: | ||
= Division of the twelfth harmonic into n equal parts = | = Division of the twelfth harmonic into n equal parts = | ||
The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with | The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with dodecatave equivalence, this fact shapes one's musical approach dramatically. Also, the ed12-[[edo]] correspondences fall particularly close to the harmonic series of the NTSC or PAL-M color subcarrier: | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 148: | Line 148: | ||
|28 | |28 | ||
|100.37895 | |100.37895 | ||
|100. | |100.224726 | ||
|100.117108 | |100.117108 | ||
|- | |- | ||
Line 167: | Line 167: | ||
|- | |- | ||
|32 | |32 | ||
|114.7188 | |[[Tel:114.7188|114.7188]] | ||
|114.542544 | |114.542544 | ||
|114.437552 | |114.437552 | ||
Line 207: | Line 207: | ||
|- | |- | ||
|40 | |40 | ||
|143.3985 | |[[Tel:143.3985|143.3985]] | ||
|143.17818 | |143.17818 | ||
|143.02444 | |143.02444 | ||
|- | |||
|41 | |||
|146.41815 | |||
|146.7576345 | |||
|146.600151 | |||
|- | |||
|42 | |||
|150.568425 | |||
|150.337089 | |||
|150.175862 | |||
|- | |||
|43 | |||
|154.0533875 | |||
|153.9165435 | |||
|153.751373 | |||
|- | |||
|44 | |||
|157.73835 | |||
|157.495998 | |||
|157.326884 | |||
|- | |||
|45 | |||
|161.3233125 | |||
|161.0754525 | |||
|160.902595 | |||
|- | |||
|46 | |||
|164.908275 | |||
|164.654907 | |||
|164.478306 | |||
|- | |||
|47 | |||
|168.4932375 | |||
|168.2343615 | |||
|168.053817 | |||
|- | |||
|48 | |||
|172.0782 | |||
|171.813816 | |||
|171.629328 | |||
|- | |||
|49 | |||
|175.6631625 | |||
|175.3932705 | |||
|175.205039 | |||
|- | |||
|50 | |||
|179.248125 | |||
|178.972725 | |||
|178.78075 | |||
|- | |||
|51 | |||
|182.8330875 | |||
|182.5521795 | |||
|182.356261 | |||
|- | |||
|52 | |||
|186.41805 | |||
|186.131634 | |||
|185.931772 | |||
|- | |||
|53 | |||
|190.003125 | |||
|189.7110885 | |||
|189.507483 | |||
|- | |||
|54 | |||
|193.597975 | |||
|193.290543 | |||
|193.083194 | |||
|- | |||
|55 | |||
|197.1729375 | |||
|196.869975 | |||
|196.658705 | |||
|- | |||
|56 | |||
|200.7579 | |||
|200.449452 | |||
|200.234216 | |||
|} | |} |
Revision as of 17:55, 5 November 2021
Ed12 means Division of the Twelfth Harmonic (12/1) into n equal parts.
Division of the twelfth harmonic into n equal parts
The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with dodecatave equivalence, this fact shapes one's musical approach dramatically. Also, the ed12-edo correspondences fall particularly close to the harmonic series of the NTSC or PAL-M color subcarrier:
edo | ed12 | NTSC*n | PAL-M*n |
---|---|---|---|
1 | 3.5849625 | 3.579545 MHz | 3.575611 MHz |
2 | 7.169925 | 7.158909 | 7.151222 |
3 | 10.7548875 | 10.7383635 | 10.726833 |
4 | 14.33985 | 14.317818 | 14.302444 |
5 | 17.9248125 | 17.8972725 | 17.878055 |
6 | 21.509775 | 21.476727 | 21.453666 |
7 | 25.0947375 | 25.0561815 | 25.029277 |
8 | 28.6797 | 28.635636 | 28.604888 |
9 | 32.2646625 | 32.2150905 | 32.180299 |
10 | 35.849625 | 35.79545 | 35.75611 |
11 | 39.4345875 | 39.3739995 | 39.331521 |
12 | 43.01955 | 42.953454 | 42.907332 |
13 | 46.6045125 | 46.5329085 | 46.482743 |
14 | 50.189475 | 50.112363 | 50.058554 |
15 | 53.7744375 | 53.6918175 | 53.634265 |
16 | 57.3594 | 57.271272 | 57.209776 |
17 | 60.9443625 | 60.8507265 | 60.785487 |
18 | 64.529325 | 64.430181 | 64.360598 |
19 | 68.1142875 | 68.0096355 | 67.936709 |
20 | 71.69925 | 71.58909 | 71.51222 |
21 | 75.2842125 | 75.1685445 | 75.087931 |
22 | 78.869175 | 78.747999 | 78.663442 |
23 | 82.4541375 | 82.3274535 | 82.239153 |
24 | 86.0391 | 85.906908 | 85.814664 |
25 | 89.6240625 | 89.4863625 | 89.390375 |
26 | 93.209025 | 93.065817 | 92.965886 |
27 | 96.7939875 | 96.6452715 | 96.541597 |
28 | 100.37895 | 100.224726 | 100.117108 |
29 | 103.9639125 | 103.8041805 | 103.692819 |
30 | 107.548875 | 107.38365 | 107.28633 |
31 | 111.1338375 | 110.9630895 | 110.894041 |
32 | [[1]] | 114.542544 | 114.437552 |
33 | 118.3037625 | 118.1219985 | 118.045263 |
34 | 121.888725 | 121.701453 | 121.588774 |
35 | 125.4736875 | 125.2809075 | 125.096485 |
36 | 129.05865 | 128.860362 | 128.739296 |
37 | 132.6436125 | 132.4398165 | 132.247707 |
38 | 136.228575 | 136.019271 | 135.860518 |
39 | 139.8135375 | 139.5987255 | 135.398929 |
40 | [[2]] | 143.17818 | 143.02444 |
41 | 146.41815 | 146.7576345 | 146.600151 |
42 | 150.568425 | 150.337089 | 150.175862 |
43 | 154.0533875 | 153.9165435 | 153.751373 |
44 | 157.73835 | 157.495998 | 157.326884 |
45 | 161.3233125 | 161.0754525 | 160.902595 |
46 | 164.908275 | 164.654907 | 164.478306 |
47 | 168.4932375 | 168.2343615 | 168.053817 |
48 | 172.0782 | 171.813816 | 171.629328 |
49 | 175.6631625 | 175.3932705 | 175.205039 |
50 | 179.248125 | 178.972725 | 178.78075 |
51 | 182.8330875 | 182.5521795 | 182.356261 |
52 | 186.41805 | 186.131634 | 185.931772 |
53 | 190.003125 | 189.7110885 | 189.507483 |
54 | 193.597975 | 193.290543 | 193.083194 |
55 | 197.1729375 | 196.869975 | 196.658705 |
56 | 200.7579 | 200.449452 | 200.234216 |