Edϕ: Difference between revisions
Jump to navigation
Jump to search
Cmloegcmluin (talk | contribs) No edit summary |
Cmloegcmluin (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
Various equal divisions of the octave have close approximations of acoustic phi. | |||
If the mth step of n-edo is a close approximation of φ, the nth step of m-edφ will be a close approximation of an octave. | |||
Such m-edφ are interesting as variants of their respective n-edo, introducing some combination tone powers. | |||
{| class="wikitable" | {| class="wikitable" |
Revision as of 23:52, 8 February 2020
Various equal divisions of the octave have close approximations of acoustic phi.
If the mth step of n-edo is a close approximation of φ, the nth step of m-edφ will be a close approximation of an octave.
Such m-edφ are interesting as variants of their respective n-edo, introducing some combination tone powers.
10ed2 | 7edφ or 10ed([math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} }[/math]) | |||||||
scale step | frequency multiplier (definition) | 10ed2 frequency multiplier (decimal) | pitch (¢) | Δ (¢) | frequency multiplier (definition) | frequency multiplier (decimal) | pitch (¢) | Δ (¢) |
1 | [math]\displaystyle{ 2^{\frac{1}{10}} }[/math] | 1.071773463 | 120 | 120 | [math]\displaystyle{ φ^{\frac{1}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{1log_2{φ}}{7}} }[/math] | 1.071162542 | 119.0128995 | 119.0128995 |
2 | [math]\displaystyle{ 2^{\frac{2}{10}} }[/math] | 1.148698355 | 240 | 120 | [math]\displaystyle{ φ^{\frac{2}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{2log_2{φ}}{7}} }[/math] | 1.147389191 | 238.025799 | 119.0128995 |
3 | [math]\displaystyle{ 2^{\frac{3}{10}} }[/math] | 1.231144413 | 360 | 120 | [math]\displaystyle{ φ^{\frac{3}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{3log_2{φ}}{7}} }[/math] | 1.229040323 | 357.0386984 | 119.0128995 |
4 | [math]\displaystyle{ 2^{\frac{4}{10}} }[/math] | 1.319507911 | 480 | 120 | [math]\displaystyle{ φ^{\frac{4}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{4log_2{φ}}{7}} }[/math] | 1.316501956 | 476.0515979 | 119.0128995 |
5 | [math]\displaystyle{ 2^{\frac{5}{10}} }[/math] | 1.414213562 | 600 | 120 | [math]\displaystyle{ φ^{\frac{5}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{5log_2{φ}}{7}} }[/math] | 1.410187582 | 595.0644974 | 119.0128995 |
6 | [math]\displaystyle{ 2^{\frac{6}{10}} }[/math] | 1.515716567 | 720 | 120 | [math]\displaystyle{ φ^{\frac{6}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{6log_2{φ}}{7}} }[/math] | 1.510540115 | 714.0773969 | 119.0128995 |
7 | [math]\displaystyle{ 2^{\frac{7}{10}} }[/math] | 1.624504793 | 840 | 120 | [math]\displaystyle{ φ^{\frac{7}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{7log_2{φ}}{7}} }[/math] | 1.618033989 | 833.0902964 | 119.0128995 |
8 | [math]\displaystyle{ 2^{\frac{8}{10}} }[/math] | 1.741101127 | 960 | 120 | [math]\displaystyle{ φ^{\frac{8}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{8log_2{φ}}{7}} }[/math] | 1.7331774 | 952.1031958 | 119.0128995 |
9 | [math]\displaystyle{ 2^{\frac{9}{10}} }[/math] | 1.866065983 | 1080 | 120 | [math]\displaystyle{ φ^{\frac{9}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{9log_2{φ}}{7}} }[/math] | 1.85651471 | 1071.116095 | 119.0128995 |
10 | [math]\displaystyle{ 2^{\frac{10}{10}} }[/math] | 2 | 1200 | 120 | [math]\displaystyle{ φ^{\frac{10}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} }[/math] | 1.988629015 | 1190.128995 | 119.0128995 |