Edϕ: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cmloegcmluin (talk | contribs)
Created page with "7 steps of 10ed2 closely approximates the 13th harmonic. The 13th harmonic is close to acoustic phi. If we divide acoustic phi into 7 steps, then 10 of those steps gets us clo..."
 
Cmloegcmluin (talk | contribs)
No edit summary
Line 1: Line 1:
7 steps of 10ed2 closely approximates the 13th harmonic. The 13th harmonic is close to acoustic phi. If we divide acoustic phi into 7 steps, then 10 of those steps gets us close to an octave.
7 steps of 10ed2 closely approximates the 13th harmonic. The 13th harmonic is close to acoustic phi (1.618033989). If we divide acoustic phi into 7 steps, then 10 of those steps gets us close to an octave.
 
{| class="wikitable"
|+
|
| colspan="4" |'''10ed2'''
| colspan="4" |'''7edφ'''
|-
|'''scale step'''
|'''frequency multiplier (definition)'''
|'''10ed2 frequency multiplier (decimal)'''
|'''pitch (¢)'''
|'''Δ (¢)'''
|'''frequency multiplier (definition)'''
|'''frequency multiplier (decimal)'''
|'''pitch (¢)'''
|'''Δ (¢)'''
|-
|'''1'''
|2^(1/10)
|1.071773463
|120
|120
|
|1.071162542
|119.0128995
|119.0128995
|-
|'''2'''
|
|1.148698355
|240
|120
|
|1.147389191
|238.025799
|119.0128995
|-
|'''3'''
|
|1.231144413
|360
|120
|
|1.229040323
|357.0386984
|119.0128995
|-
|'''4'''
|
|1.319507911
|480
|120
|
|1.316501956
|476.0515979
|119.0128995
|-
|'''5'''
|
|1.414213562
|600
|120
|
|1.410187582
|595.0644974
|119.0128995
|-
|'''6'''
|
|1.515716567
|720
|120
|
|1.510540115
|714.0773969
|119.0128995
|-
|'''7'''
|
|1.624504793
|840
|120
|
|1.618033989
|833.0902964
|119.0128995
|-
|'''8'''
|
|1.741101127
|960
|120
|
|1.7331774
|952.1031958
|119.0128995
|-
|'''9'''
|
|1.866065983
|1080
|120
|
|1.85651471
|1071.116095
|119.0128995
|-
|'''10'''
|
|2
|1200
|120
|
|1.988629015
|1190.128995
|119.0128995
|}

Revision as of 18:39, 8 February 2020

7 steps of 10ed2 closely approximates the 13th harmonic. The 13th harmonic is close to acoustic phi (1.618033989). If we divide acoustic phi into 7 steps, then 10 of those steps gets us close to an octave.

10ed2 7edφ
scale step frequency multiplier (definition) 10ed2 frequency multiplier (decimal) pitch (¢) Δ (¢) frequency multiplier (definition) frequency multiplier (decimal) pitch (¢) Δ (¢)
1 2^(1/10) 1.071773463 120 120 1.071162542 119.0128995 119.0128995
2 1.148698355 240 120 1.147389191 238.025799 119.0128995
3 1.231144413 360 120 1.229040323 357.0386984 119.0128995
4 1.319507911 480 120 1.316501956 476.0515979 119.0128995
5 1.414213562 600 120 1.410187582 595.0644974 119.0128995
6 1.515716567 720 120 1.510540115 714.0773969 119.0128995
7 1.624504793 840 120 1.618033989 833.0902964 119.0128995
8 1.741101127 960 120 1.7331774 952.1031958 119.0128995
9 1.866065983 1080 120 1.85651471 1071.116095 119.0128995
10 2 1200 120 1.988629015 1190.128995 119.0128995