11-limit: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 232431280 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 232431954 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-05-27 12: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-05-27 12:41:23 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>232431954</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //11-limit// consists of all [[ | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //11-limit// consists of all [[JustIntonation|justly tuned]] intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are [[14_11|14/11]], [[11_8|11/8]], [[27_22|27/22]] and [[99_98|99/98]]. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1. | ||
Relative to their size, [[edo]]s which do (relatively) well in supporting 11-limit intervals are: [[12edo]], [[15edo]], [[22edo]], [[31edo]], [[41edo]], [[46edo]], [[58edo]], [[72edo]], [[118edo]], [[130edo]] and [[152edo]]. | Relative to their size, [[edo]]s which do (relatively) well in supporting 11-limit intervals are: [[12edo]], [[15edo]], [[22edo]], [[31edo]], [[41edo]], [[46edo]], [[58edo]], [[72edo]], [[118edo]], [[130edo]] and [[152edo]]. | ||
Line 13: | Line 13: | ||
</pre></div> | </pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>11-limit</title></head><body>The <em>11-limit</em> consists of all <a class="wiki_link" href="/ | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>11-limit</title></head><body>The <em>11-limit</em> consists of all <a class="wiki_link" href="/JustIntonation">justly tuned</a> intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are <a class="wiki_link" href="/14_11">14/11</a>, <a class="wiki_link" href="/11_8">11/8</a>, <a class="wiki_link" href="/27_22">27/22</a> and <a class="wiki_link" href="/99_98">99/98</a>. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1.<br /> | ||
<br /> | <br /> | ||
Relative to their size, <a class="wiki_link" href="/edo">edo</a>s which do (relatively) well in supporting 11-limit intervals are: <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/15edo">15edo</a>, <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/118edo">118edo</a>, <a class="wiki_link" href="/130edo">130edo</a> and <a class="wiki_link" href="/152edo">152edo</a>.<br /> | Relative to their size, <a class="wiki_link" href="/edo">edo</a>s which do (relatively) well in supporting 11-limit intervals are: <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/15edo">15edo</a>, <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/118edo">118edo</a>, <a class="wiki_link" href="/130edo">130edo</a> and <a class="wiki_link" href="/152edo">152edo</a>.<br /> | ||
<br /> | <br /> | ||
See <a class="wiki_link" href="/Harmonic%20Limit">Harmonic Limit</a>.</body></html></pre></div> | See <a class="wiki_link" href="/Harmonic%20Limit">Harmonic Limit</a>.</body></html></pre></div> |
Revision as of 12:41, 27 May 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-05-27 12:41:23 UTC.
- The original revision id was 232431954.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The //11-limit// consists of all [[JustIntonation|justly tuned]] intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are [[14_11|14/11]], [[11_8|11/8]], [[27_22|27/22]] and [[99_98|99/98]]. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1. Relative to their size, [[edo]]s which do (relatively) well in supporting 11-limit intervals are: [[12edo]], [[15edo]], [[22edo]], [[31edo]], [[41edo]], [[46edo]], [[58edo]], [[72edo]], [[118edo]], [[130edo]] and [[152edo]]. See [[Harmonic Limit]].
Original HTML content:
<html><head><title>11-limit</title></head><body>The <em>11-limit</em> consists of all <a class="wiki_link" href="/JustIntonation">justly tuned</a> intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are <a class="wiki_link" href="/14_11">14/11</a>, <a class="wiki_link" href="/11_8">11/8</a>, <a class="wiki_link" href="/27_22">27/22</a> and <a class="wiki_link" href="/99_98">99/98</a>. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1.<br /> <br /> Relative to their size, <a class="wiki_link" href="/edo">edo</a>s which do (relatively) well in supporting 11-limit intervals are: <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/15edo">15edo</a>, <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/118edo">118edo</a>, <a class="wiki_link" href="/130edo">130edo</a> and <a class="wiki_link" href="/152edo">152edo</a>.<br /> <br /> See <a class="wiki_link" href="/Harmonic%20Limit">Harmonic Limit</a>.</body></html>