10edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 519523810 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<span style="font-size: 18px; line-height: 27px;">'''10 Equal Divisions of the Tritave'''</span>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2014-08-25 04:13:45 UTC</tt>.<br>
: The original revision id was <tt>519523810</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">
&lt;span style="font-size: 18px; line-height: 27px;"&gt;**10 Equal Divisions of the Tritave**&lt;/span&gt;


|| Degrees || Cents || Approximate Ratios ||
{| class="wikitable"
|| 0 || 0 || &lt;span style="color: #660000;"&gt;[[1_1|1/1]]&lt;/span&gt; ||
|-
|| 1 || 190.196 || [[10_9|10/9]], [[28_25|28/25]] ||
| | Degrees
|| 2 || 380.391 || &lt;span style="color: #660000;"&gt;[[5_4|5/4]]&lt;/span&gt; ||
| | Cents
|| 3 || 570.587 || [[7_5|7/5]] ||
| | Approximate Ratios
|| 4 || 760.782 || &lt;span style="color: #660000;"&gt;[[14_9|14/9]]&lt;/span&gt; ||
|-
|| 5 || 950.978 || [[19_11|19/11]]? ||
| | 0
|| 6 || 1141.173 || &lt;span style="color: #660000;"&gt;[[27_14|27/14]]&lt;/span&gt; ||
| | 0
|| 7 || 1331.369 || [[15_7|15/7]] ([[15_14|15/14]] plus an octave) ||
| | <span style="color: #660000;">[[1/1|1/1]]</span>
|| 8 || 1521.564 || [[12_5|5/5]] (&lt;span style="color: #660000;"&gt;[[6_5|6/5]]&lt;/span&gt; plus an octave) ||
|-
|| 9 || 1711.760 || [[27_10|27/10]] ||
| | 1
|| 10 || 1901.955 || [[3_1|3/1]] ||
| | 190.196
| | [[10/9|10/9]], [[28/25|28/25]]
|-
| | 2
| | 380.391
| | <span style="color: #660000;">[[5/4|5/4]]</span>
|-
| | 3
| | 570.587
| | [[7/5|7/5]]
|-
| | 4
| | 760.782
| | <span style="color: #660000;">[[14/9|14/9]]</span>
|-
| | 5
| | 950.978
| | [[19/11|19/11]]?
|-
| | 6
| | 1141.173
| | <span style="color: #660000;">[[27/14|27/14]]</span>
|-
| | 7
| | 1331.369
| | [[15/7|15/7]] ([[15/14|15/14]] plus an octave)
|-
| | 8
| | 1521.564
| | [[12/5|5/5]] (<span style="color: #660000;">[[6/5|6/5]]</span> plus an octave)
|-
| | 9
| | 1711.760
| | [[27/10|27/10]]
|-
| | 10
| | 1901.955
| | [[3/1|3/1]]
|}


 
10edt, like [[5edt|5edt]], has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.
10edt, like [[5edt]], has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.</pre></div>
[[Category:edt]]
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;10edt&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;br /&gt;
&lt;span style="font-size: 18px; line-height: 27px;"&gt;&lt;strong&gt;10 Equal Divisions of the Tritave&lt;/strong&gt;&lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Degrees&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Approximate Ratios&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/1_1"&gt;1/1&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;190.196&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/10_9"&gt;10/9&lt;/a&gt;, &lt;a class="wiki_link" href="/28_25"&gt;28/25&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;380.391&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;570.587&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;760.782&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/14_9"&gt;14/9&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;950.978&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_11"&gt;19/11&lt;/a&gt;?&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1141.173&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/27_14"&gt;27/14&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1331.369&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/15_7"&gt;15/7&lt;/a&gt; (&lt;a class="wiki_link" href="/15_14"&gt;15/14&lt;/a&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1521.564&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/12_5"&gt;5/5&lt;/a&gt; (&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;&lt;/span&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1711.760&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/27_10"&gt;27/10&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1901.955&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/3_1"&gt;3/1&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;br /&gt;
10edt, like &lt;a class="wiki_link" href="/5edt"&gt;5edt&lt;/a&gt;, has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of &amp;quot;meantone&amp;quot; temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

10 Equal Divisions of the Tritave

Degrees Cents Approximate Ratios
0 0 1/1
1 190.196 10/9, 28/25
2 380.391 5/4
3 570.587 7/5
4 760.782 14/9
5 950.978 19/11?
6 1141.173 27/14
7 1331.369 15/7 (15/14 plus an octave)
8 1521.564 5/5 (6/5 plus an octave)
9 1711.760 27/10
10 1901.955 3/1

10edt, like 5edt, has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.