|
Tags: Mobile edit Mobile web edit |
Line 279: |
Line 279: |
| ===Tertiaseptal=== | | ===Tertiaseptal=== |
| Aside from 2100875/2097152, [[tertiaseptal]] temperament tempers out 2401/2400, 65625/65536, and 703125/702464 in the 7-limit. It can be described as the 31&171 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 243/242, 375/374, 441/440, 625/624, and 3584/3575. | | Aside from 2100875/2097152, [[tertiaseptal]] temperament tempers out 2401/2400, 65625/65536, and 703125/702464 in the 7-limit. It can be described as the 31&171 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 243/242, 375/374, 441/440, 625/624, and 3584/3575. |
|
| |
| {| class="wikitable"
| |
| |-
| |
| ! | generator
| |
| ! | cents value <sup>a</sup><br>(octave-reduced)
| |
| ! | 17-limit ratio<br>(octave-reduced)
| |
| |-
| |
| | | 1
| |
| | | 77.2
| |
| | | 117/112, 256/245, 68/65
| |
| |-
| |
| | | 2
| |
| | | 154.4
| |
| | | 130/119, [[35/32]]
| |
| |-
| |
| | | 3
| |
| | | 231.6
| |
| | | '''[[8/7]]'''
| |
| |-
| |
| | | 4
| |
| | | 308.8
| |
| | | 117/98, 140/117
| |
| |-
| |
| | | 5
| |
| | | 386.0
| |
| | | '''[[5/4]]'''
| |
| |-
| |
| | | 6
| |
| | | 463.2
| |
| | | '''[[17/13]]'''
| |
| |-
| |
| | | 7
| |
| | | 540.4
| |
| | | 175/128
| |
| |-
| |
| | | 8
| |
| | | 617.6
| |
| | | '''[[10/7]]'''
| |
| |-
| |
| | | 9
| |
| | | 694.8
| |
| | | 112/75
| |
| |-
| |
| | | 10
| |
| | | 772.0
| |
| | | [[25/16]]
| |
| |-
| |
| | | 11
| |
| | | 849.2
| |
| | | 44/27, '''[[18/11]]'''
| |
| |-
| |
| | | 12
| |
| | | 926.4
| |
| | | 128/75
| |
| |-
| |
| | | 13
| |
| | | 1003.6
| |
| | | [[25/14]]
| |
| |-
| |
| | | 14
| |
| | | 1080.8
| |
| | | '''[[28/15]]'''
| |
| |-
| |
| | | 15
| |
| | | 1158.0
| |
| | | 39/20
| |
| |-
| |
| | | 16
| |
| | | 35.2
| |
| | | 55/54, 52/51, 51/50, [[50/49]], [[49/48]], [[45/44]]
| |
| |-
| |
| | | 17
| |
| | | 112.4
| |
| | | '''[[16/15]]'''
| |
| |-
| |
| | | 18
| |
| | | 189.6
| |
| | | 39/35
| |
| |-
| |
| | | 19
| |
| | | 266.8
| |
| | | '''[[7/6]]'''
| |
| |-
| |
| | | 20
| |
| | | 344.0
| |
| | | 39/32
| |
| |-
| |
| | | 21
| |
| | | 421.2
| |
| | | [[51/40]]
| |
| |-
| |
| | | 22
| |
| | | 498.4
| |
| | | '''[[4/3]]'''
| |
| |-
| |
| | | 23
| |
| | | 575.6
| |
| | | 39/28
| |
| |-
| |
| | | 24
| |
| | | 652.8
| |
| | | [[35/24]]
| |
| |-
| |
| | | 25
| |
| | | 730.0
| |
| | | [[32/21]]
| |
| |-
| |
| | | 26
| |
| | | 807.2
| |
| | | 51/32
| |
| |-
| |
| | | 27
| |
| | | 884.4
| |
| | | '''[[5/3]]'''
| |
| |-
| |
| | | 28
| |
| | | 961.6
| |
| | | 68/39
| |
| |-
| |
| | | 29
| |
| | | 1038.8
| |
| | | 51/28
| |
| |-
| |
| | | 30
| |
| | | 1116.0
| |
| | | [[40/21]], [[21/11]]
| |
| |-
| |
| | | 31
| |
| | | 1193.2
| |
| | |
| |
| |-
| |
| | | 32
| |
| | | 70.4
| |
| | | [[26/25]], [[25/24]]
| |
| |-
| |
| | | 33
| |
| | | 147.6
| |
| | | '''[[12/11]]'''
| |
| |-
| |
| | | 34
| |
| | | 224.8
| |
| | | 91/80
| |
| |-
| |
| | | 35
| |
| | | 302.0
| |
| | | [[25/21]]
| |
| |-
| |
| | | 36
| |
| | | 379.3
| |
| | | 96/77
| |
| |-
| |
| | | 37
| |
| | | 456.5
| |
| | | '''[[13/10]]'''
| |
| |-
| |
| | | 38
| |
| | | 533.7
| |
| | | 34/25, '''[[15/11]]'''
| |
| |-
| |
| | | 39
| |
| | | 610.9
| |
| | | [[64/45]]
| |
| |-
| |
| | | 40
| |
| | | 688.1
| |
| | | 52/35
| |
| |-
| |
| | | 41
| |
| | | 765.3
| |
| | | '''[[14/9]]'''
| |
| |-
| |
| | | 42
| |
| | | 842.5
| |
| | | '''[[13/8]]'''
| |
| |-
| |
| | | 43
| |
| | | 919.7
| |
| | | '''[[17/10]]'''
| |
| |-
| |
| | | 44
| |
| | | 996.9
| |
| | | '''[[16/9]]'''
| |
| |-
| |
| | | 45
| |
| | | 1074.1
| |
| | | '''[[13/7]]'''
| |
| |-
| |
| | | 46
| |
| | | 1151.3
| |
| | | 68/35, [[35/18]]
| |
| |-
| |
| | | 47
| |
| | | 28.5
| |
| | | [[65/64]], [[64/63]], [[56/55]]
| |
| |-
| |
| | | 48
| |
| | | 105.7
| |
| | | '''[[17/16]]'''
| |
| |-
| |
| | | 49
| |
| | | 182.9
| |
| | | '''[[10/9]]'''
| |
| |-
| |
| | | 50
| |
| | | 260.1
| |
| | | [[64/55]]
| |
| |-
| |
| | | 51
| |
| | | 337.3
| |
| | | '''[[17/14]]'''
| |
| |-
| |
| | | 52
| |
| | | 414.5
| |
| | | '''[[14/11]]'''
| |
| |-
| |
| | | 53
| |
| | | 491.7
| |
| | | 65/49
| |
| |-
| |
| | | 54
| |
| | | 568.9
| |
| | | [[25/18]]
| |
| |-
| |
| | | 55
| |
| | | 646.1
| |
| | | '''[[16/11]]'''
| |
| |-
| |
| | | 56
| |
| | | 723.3
| |
| | | 85/56
| |
| |-
| |
| | | 57
| |
| | | 800.5
| |
| | | 35/22
| |
| |-
| |
| | | 58
| |
| | | 877.7
| |
| | | 128/77
| |
| |-
| |
| | | 59
| |
| | | 954.9
| |
| | | '''[[26/15]]'''
| |
| |-
| |
| | | 60
| |
| | | 1032.1
| |
| | | '''[[20/11]]'''
| |
| |-
| |
| | | 61
| |
| | | 1109.3
| |
| | | 91/48, 256/135
| |
| |-
| |
| | | 62
| |
| | | 1186.5
| |
| | | 208/105
| |
| |-
| |
| | | 63
| |
| | | 63.7
| |
| | | [[28/27]]
| |
| |-
| |
| | | 64
| |
| | | 140.9
| |
| | | '''[[13/12]]'''
| |
| |-
| |
| | | 65
| |
| | | 218.1
| |
| | | '''[[17/15]]''', [[25/22]]
| |
| |-
| |
| | | 66
| |
| | | 295.3
| |
| | | [[32/27]]
| |
| |-
| |
| | | 67
| |
| | | 372.5
| |
| | | [[26/21]]
| |
| |-
| |
| | | 68
| |
| | | 449.7
| |
| | | [[35/27]]
| |
| |-
| |
| | | 69
| |
| | | 526.9
| |
| | | 65/48
| |
| |-
| |
| | | 70
| |
| | | 604.1
| |
| | | '''[[17/12]]'''
| |
| |-
| |
| | | 71
| |
| | | 681.3
| |
| | | [[40/27]]
| |
| |-
| |
| | | 72
| |
| | | 758.5
| |
| | | 65/42
| |
| |-
| |
| | | 73
| |
| | | 835.7
| |
| | | [[34/21]]
| |
| |-
| |
| | | 74
| |
| | | 912.9
| |
| | | 56/33
| |
| |-
| |
| | | 75
| |
| | | 990.1
| |
| | | 39/22
| |
| |-
| |
| | | 76
| |
| | | 1067.3
| |
| | | 50/27
| |
| |-
| |
| | | 77
| |
| | | 1144.5
| |
| | | 64/33
| |
| |-
| |
| | | 78
| |
| | | 21.7
| |
| | | 91/90, 85/84, 78/77
| |
| |-
| |
| | | 79
| |
| | | 98.9
| |
| | | 35/33
| |
| |-
| |
| | | 80
| |
| | | 176.1
| |
| | | 195/176
| |
| |-
| |
| | | 81
| |
| | | 253.3
| |
| | | 52/45
| |
| |-
| |
| | | 82
| |
| | | 330.5
| |
| | | 40/33
| |
| |-
| |
| | | 83
| |
| | | 407.7
| |
| | | 91/72
| |
| |-
| |
| | | 84
| |
| | | 484.9
| |
| | | 119/90
| |
| |-
| |
| | | 85
| |
| | | 562.1
| |
| | | 112/81
| |
| |-
| |
| | | 86
| |
| | | 639.3
| |
| | | '''[[13/9]]'''
| |
| |-
| |
| | | 87
| |
| | | 716.5
| |
| | | 68/45, 50/33
| |
| |-
| |
| | | 88
| |
| | | 793.7
| |
| | | 128/81
| |
| |-
| |
| | | 89
| |
| | | 870.9
| |
| | | 119/72
| |
| |-
| |
| | | 90
| |
| | | 948.1
| |
| | | 140/81
| |
| |-
| |
| | | 91
| |
| | | 1025.3
| |
| | | 65/36
| |
| |-
| |
| | | 92
| |
| | | 1102.5
| |
| | | '''[[17/9]]'''
| |
| |-
| |
| | | 93
| |
| | | 1179.7
| |
| | | [[160/81]], 196/99, 240/121
| |
| |-
| |
| | | 94
| |
| | | 56.9
| |
| | | 91/88
| |
| |-
| |
| | | 95
| |
| | | 134.1
| |
| | | 68/63
| |
| |-
| |
| | | 96
| |
| | | 211.3
| |
| | | 112/99
| |
| |-
| |
| | | 97
| |
| | | 288.5
| |
| | | '''[[13/11]]'''
| |
| |-
| |
| | | 98
| |
| | | 365.7
| |
| | | 68/55
| |
| |-
| |
| | | 99
| |
| | | 442.9
| |
| | | 128/99
| |
| |-
| |
| | | 100
| |
| | | 520.1
| |
| | | 104/77
| |
| |-
| |
| | | 101
| |
| | | 597.3
| |
| | |
| |
| |-
| |
| | | 102
| |
| | | 674.5
| |
| | |
| |
| |-
| |
| | | 103
| |
| | | 751.7
| |
| | | '''[[17/11]]'''
| |
| |-
| |
| | | 104
| |
| | | 828.9
| |
| | | 160/99
| |
| |-
| |
| | | 105
| |
| | | 906.1
| |
| | |
| |
| |-
| |
| | | 106
| |
| | | 983.3
| |
| | | 136/77
| |
| |-
| |
| | | 107
| |
| | | 1060.6
| |
| | |
| |
| |-
| |
| | | 108
| |
| | | 1137.8
| |
| | | 52/27, 85/44
| |
| |-
| |
| | | 109
| |
| | | 15.0
| |
| | | [[100/99]]
| |
| |-
| |
| | | 110
| |
| | | 92.2
| |
| | | 128/121, [[256/243]]
| |
| |-
| |
| | | 111
| |
| | | 169.4
| |
| | |
| |
| |-
| |
| | | 112
| |
| | | 246.6
| |
| | |
| |
| |-
| |
| | | 113
| |
| | | 323.8
| |
| | |
| |
| |-
| |
| | | 114
| |
| | | 401.0
| |
| | | 34/27
| |
| |-
| |
| | | 115
| |
| | | 478.2
| |
| | |
| |
| |-
| |
| | | 116
| |
| | | 555.4
| |
| | |
| |
| |-
| |
| | | 117
| |
| | | 632.6
| |
| | |
| |
| |-
| |
| | | 118
| |
| | | 709.8
| |
| | |
| |
| |-
| |
| | | 119
| |
| | | 787.0
| |
| | | 52/33
| |
| |-
| |
| | | 120
| |
| | | 864.2
| |
| | |
| |
| |-
| |
| | | 121
| |
| | | 941.4
| |
| | |
| |
| |-
| |
| | | 122
| |
| | | 1018.6
| |
| | |
| |
| |-
| |
| | | 123
| |
| | | 1095.8
| |
| | |
| |
| |-
| |
| | | 124
| |
| | | 1173.0
| |
| | | 65/33
| |
| |-
| |
| | | 125
| |
| | | 50.2
| |
| | | 34/33
| |
| |}
| |
| <sup>a</sup> in 17-limit POTE tuning
| |
|
| |
|
| ===Tertia=== | | ===Tertia=== |
| Aside from 2100875/2097152, [[tertiaseptal|tertia]] temperament tempers out 385/384, 1331/1323, and 1375/1372 in the 11-limit. It can be described as the 31&140 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 352/351, 385/384, 561/560, 625/624, and 715/714. | | Aside from 2100875/2097152, [[tertiaseptal|tertia]] temperament tempers out 385/384, 1331/1323, and 1375/1372 in the 11-limit. It can be described as the 31&140 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 352/351, 385/384, 561/560, 625/624, and 715/714. |
|
| |
| {| class="wikitable"
| |
| |-
| |
| ! | generator
| |
| ! | cents value <sup>a</sup><br>(octave-reduced)
| |
| ! | 17-limit ratio<br>(octave-reduced)
| |
| |-
| |
| | | 1
| |
| | | 77.2
| |
| | | 117/112, 256/245, 68/65, [[22/21]]
| |
| |-
| |
| | | 2
| |
| | | 154.3
| |
| | | '''[[12/11]]''', [[35/32]]
| |
| |-
| |
| | | 3
| |
| | | 231.5
| |
| | | '''[[8/7]]'''
| |
| |-
| |
| | | 4
| |
| | | 308.6
| |
| | | 117/98, 140/117
| |
| |-
| |
| | | 5
| |
| | | 385.8
| |
| | | '''[[5/4]]'''
| |
| |-
| |
| | | 6
| |
| | | 463.0
| |
| | | '''[[17/13]]'''
| |
| |-
| |
| | | 7
| |
| | | 540.1
| |
| | | '''[[15/11]]'''
| |
| |-
| |
| | | 8
| |
| | | 617.3
| |
| | | '''[[10/7]]'''
| |
| |-
| |
| | | 9
| |
| | | 694.5
| |
| | | 112/75
| |
| |-
| |
| | | 10
| |
| | | 771.6
| |
| | | [[25/16]]
| |
| |-
| |
| | | 11
| |
| | | 848.8
| |
| | | 85/52, 80/49, 49/30
| |
| |-
| |
| | | 12
| |
| | | 925.9
| |
| | | 128/75
| |
| |-
| |
| | | 13
| |
| | | 1003.1
| |
| | | [[25/14]]
| |
| |-
| |
| | | 14
| |
| | | 1080.3
| |
| | | '''[[28/15]]'''
| |
| |-
| |
| | | 15
| |
| | | 1157.4
| |
| | | 39/20, 88/45
| |
| |-
| |
| | | 16
| |
| | | 34.6
| |
| | | [[56/55]], 52/51, 51/50, [[50/49]], [[49/48]]
| |
| |-
| |
| | | 17
| |
| | | 111.8
| |
| | | '''[[16/15]]'''
| |
| |-
| |
| | | 18
| |
| | | 188.9
| |
| | | 39/35
| |
| |-
| |
| | | 19
| |
| | | 266.1
| |
| | | '''[[7/6]]'''
| |
| |-
| |
| | | 20
| |
| | | 343.2
| |
| | | '''[[11/9]]'''
| |
| |-
| |
| | | 21
| |
| | | 420.4
| |
| | | '''[[14/11]]'''
| |
| |-
| |
| | | 22
| |
| | | 497.6
| |
| | | '''[[4/3]]'''
| |
| |-
| |
| | | 23
| |
| | | 574.7
| |
| | | 39/28
| |
| |-
| |
| | | 24
| |
| | | 651.9
| |
| | | '''[[16/11]]''', [[35/24]]
| |
| |-
| |
| | | 25
| |
| | | 729.1
| |
| | | [[32/21]]
| |
| |-
| |
| | | 26
| |
| | | 806.2
| |
| | | 35/22, 51/32
| |
| |-
| |
| | | 27
| |
| | | 883.4
| |
| | | '''[[5/3]]'''
| |
| |-
| |
| | | 28
| |
| | | 960.5
| |
| | | 68/39
| |
| |-
| |
| | | 29
| |
| | | 1037.7
| |
| | | '''[[20/11]]'''
| |
| |-
| |
| | | 30
| |
| | | 1114.9
| |
| | | [[40/21]]
| |
| |-
| |
| | | 31
| |
| | | 1192.0
| |
| | |
| |
| |-
| |
| | | 32
| |
| | | 69.2
| |
| | | [[26/25]], [[25/24]]
| |
| |-
| |
| | | 33
| |
| | | 146.4
| |
| | | 49/45
| |
| |-
| |
| | | 34
| |
| | | 223.5
| |
| | | [[25/22]]
| |
| |-
| |
| | | 35
| |
| | | 300.7
| |
| | | [[25/21]]
| |
| |-
| |
| | | 36
| |
| | | 377.8
| |
| | | 56/45
| |
| |-
| |
| | | 37
| |
| | | 455.0
| |
| | | '''[[13/10]]'''
| |
| |-
| |
| | | 38
| |
| | | 532.2
| |
| | | 34/25
| |
| |-
| |
| | | 39
| |
| | | 609.3
| |
| | | [[64/45]]
| |
| |-
| |
| | | 40
| |
| | | 686.5
| |
| | | 52/35
| |
| |-
| |
| | | 41
| |
| | | 763.7
| |
| | | '''[[14/9]]'''
| |
| |-
| |
| | | 42
| |
| | | 840.8
| |
| | | '''[[13/8]]''', 44/27
| |
| |-
| |
| | | 43
| |
| | | 918.0
| |
| | | '''[[17/10]]'''
| |
| |-
| |
| | | 44
| |
| | | 995.1
| |
| | | '''[[16/9]]'''
| |
| |-
| |
| | | 45
| |
| | | 1072.3
| |
| | | '''[[13/7]]'''
| |
| |-
| |
| | | 46
| |
| | | 1149.5
| |
| | | 64/33, 68/35, [[35/18]]
| |
| |-
| |
| | | 47
| |
| | | 26.6
| |
| | | 78/77, [[65/64]], [[64/63]], 55/54
| |
| |-
| |
| | | 48
| |
| | | 103.8
| |
| | | '''[[17/16]]'''
| |
| |-
| |
| | | 49
| |
| | | 180.9
| |
| | | '''[[10/9]]'''
| |
| |-
| |
| | | 50
| |
| | | 258.1
| |
| | | 65/56
| |
| |-
| |
| | | 51
| |
| | | 335.3
| |
| | | '''[[17/14]]'''
| |
| |-
| |
| | | 52
| |
| | | 412.4
| |
| | | 80/63
| |
| |-
| |
| | | 53
| |
| | | 489.6
| |
| | | 65/49
| |
| |-
| |
| | | 54
| |
| | | 566.8
| |
| | | [[25/18]]
| |
| |-
| |
| | | 55
| |
| | | 643.9
| |
| | |
| |
| |-
| |
| | | 56
| |
| | | 721.1
| |
| | | 50/33, 85/56
| |
| |-
| |
| | | 57
| |
| | | 798.2
| |
| | | 100/63
| |
| |-
| |
| | | 58
| |
| | | 875.4
| |
| | |
| |
| |-
| |
| | | 59
| |
| | | 952.6
| |
| | | '''[[26/15]]'''
| |
| |-
| |
| | | 60
| |
| | | 1029.7
| |
| | | 136/75
| |
| |-
| |
| | | 61
| |
| | | 1106.9
| |
| | | 91/48, 256/135
| |
| |-
| |
| | | 62
| |
| | | 1184.1
| |
| | | 196/99, 208/105
| |
| |-
| |
| | | 63
| |
| | | 61.2
| |
| | | [[28/27]]
| |
| |-
| |
| | | 64
| |
| | | 138.4
| |
| | | '''[[13/12]]'''
| |
| |-
| |
| | | 65
| |
| | | 215.5
| |
| | | '''[[17/15]]'''
| |
| |-
| |
| | | 66
| |
| | | 292.7
| |
| | | '''[[13/11]]''', [[32/27]]
| |
| |-
| |
| | | 67
| |
| | | 369.9
| |
| | | [[26/21]]
| |
| |-
| |
| | | 68
| |
| | | 447.0
| |
| | | [[35/27]]
| |
| |-
| |
| | | 69
| |
| | | 524.2
| |
| | | 65/48
| |
| |-
| |
| | | 70
| |
| | | 601.4
| |
| | | '''[[17/12]]'''
| |
| |-
| |
| | | 71
| |
| | | 678.5
| |
| | | [[40/27]]
| |
| |-
| |
| | | 72
| |
| | | 755.7
| |
| | | '''[[17/11]]'''
| |
| |-
| |
| | | 73
| |
| | | 832.8
| |
| | | [[34/21]]
| |
| |-
| |
| | | 74
| |
| | | 910.0
| |
| | |
| |
| |-
| |
| | | 75
| |
| | | 987.2
| |
| | | 136/77, 85/48
| |
| |-
| |
| | | 76
| |
| | | 1064.3
| |
| | | 50/27
| |
| |-
| |
| | | 77
| |
| | | 1141.5
| |
| | | 85/44
| |
| |-
| |
| | | 78
| |
| | | 18.7
| |
| | | [[100/99]], 91/90, 85/84
| |
| |-
| |
| | | 79
| |
| | | 95.8
| |
| | |
| |
| |-
| |
| | | 80
| |
| | | 173.0
| |
| | |
| |
| |-
| |
| | | 81
| |
| | | 250.1
| |
| | | 52/45
| |
| |-
| |
| | | 82
| |
| | | 327.3
| |
| | |
| |
| |-
| |
| | | 83
| |
| | | 404.5
| |
| | | 91/72
| |
| |-
| |
| | | 84
| |
| | | 481.6
| |
| | | 119/90
| |
| |-
| |
| | | 85
| |
| | | 558.8
| |
| | | 112/81
| |
| |-
| |
| | | 86
| |
| | | 636.0
| |
| | | '''[[13/9]]'''
| |
| |-
| |
| | | 87
| |
| | | 713.1
| |
| | | 68/45
| |
| |-
| |
| | | 88
| |
| | | 790.3
| |
| | | 52/33, 128/81
| |
| |-
| |
| | | 89
| |
| | | 867.4
| |
| | | 119/72
| |
| |-
| |
| | | 90
| |
| | | 944.6
| |
| | | 140/81
| |
| |-
| |
| | | 91
| |
| | | 1021.8
| |
| | | 65/36
| |
| |-
| |
| | | 92
| |
| | | 1098.9
| |
| | | '''[[17/9]]'''
| |
| |-
| |
| | | 93
| |
| | | 1176.1
| |
| | | 65/33, [[160/81]]
| |
| |-
| |
| | | 94
| |
| | | 53.2
| |
| | | 34/33
| |
| |-
| |
| | | 95
| |
| | | 130.4
| |
| | | 68/63
| |
| |-
| |
| | | 96
| |
| | | 207.6
| |
| | |
| |
| |-
| |
| | | 97
| |
| | | 284.7
| |
| | |
| |
| |-
| |
| | | 98
| |
| | | 361.9
| |
| | |
| |
| |-
| |
| | | 99
| |
| | | 439.1
| |
| | |
| |
| |-
| |
| | | 100
| |
| | | 516.2
| |
| | |
| |
| |-
| |
| | | 101
| |
| | | 593.4
| |
| | |
| |
| |-
| |
| | | 102
| |
| | | 670.5
| |
| | |
| |
| |-
| |
| | | 103
| |
| | | 747.7
| |
| | |
| |
| |-
| |
| | | 104
| |
| | | 824.9
| |
| | |
| |
| |-
| |
| | | 105
| |
| | | 902.0
| |
| | |
| |
| |-
| |
| | | 106
| |
| | | 979.2
| |
| | |
| |
| |-
| |
| | | 107
| |
| | | 1056.4
| |
| | |
| |
| |-
| |
| | | 108
| |
| | | 1133.5
| |
| | | 52/27
| |
| |-
| |
| | | 109
| |
| | | 10.7
| |
| | |
| |
| |-
| |
| | | 110
| |
| | | 87.8
| |
| | | 104/99, [[256/243]]
| |
| |-
| |
| | | 111
| |
| | | 165.0
| |
| | |
| |
| |-
| |
| | | 112
| |
| | | 242.2
| |
| | |
| |
| |-
| |
| | | 113
| |
| | | 319.3
| |
| | |
| |
| |-
| |
| | | 114
| |
| | | 396.5
| |
| | | 34/27
| |
| |}
| |
| <sup>a</sup> in 17-limit POTE tuning
| |
|
| |
|
| [[Category:Major third]] | | [[Category:Major third]] |
| [[Category:Equal-step tuning]] | | [[Category:Equal-step tuning]] |
| [[Category:Edonoi]] | | [[Category:Edonoi]] |
5ED5/4 is the equal division of the just major third into five parts of 77.2627 cents each, corresponding to every second step of 31edo. It is related to Carlos Alpha and the 7-limit temperaments which temper out 2100875/2097152 (including the tertiaseptal temperament and the valentine temperament).
Intervals
degree
|
cents value
|
ratio
|
0
|
0.0000
|
1/1
|
1
|
77.2627
|
(5/4)1/5
|
2
|
154.5255
|
(5/4)2/5
|
3
|
231.7882
|
(5/4)3/5
|
4
|
309.0510
|
(5/4)4/5
|
5
|
386.3137
|
5/4
|
6
|
463.5765
|
(5/4)6/5
|
7
|
540.8392
|
(5/4)7/5
|
8
|
618.1019
|
(5/4)8/5
|
9
|
695.3647
|
(5/4)9/5
|
10
|
772.6274
|
(5/4)2 = 25/16
|
11
|
849.8902
|
(5/4)11/5
|
12
|
927.1529
|
(5/4)12/5
|
13
|
1004.4157
|
(5/4)13/5
|
14
|
1081.6784
|
(5/4)14/5
|
15
|
1158.9411
|
(5/4)3 = 125/64
|
16
|
1236.2039
|
(5/4)16/5
|
17
|
1313.4666
|
(5/4)17/5
|
18
|
1390.7294
|
(5/4)18/5
|
19
|
1467.9921
|
(5/4)19/5
|
20
|
1545.2549
|
(5/4)4 = 625/256
|
21
|
1622.5176
|
(5/4)21/5
|
22
|
1699.7803
|
(5/4)22/5
|
23
|
1777.0431
|
(5/4)23/5
|
24
|
1854.3058
|
(5/4)24/5
|
25
|
1931.5686
|
(5/4)5 = 3125/1024
|
26
|
2008.8313
|
(5/4)26/5
|
27
|
2086.0941
|
(5/4)27/5
|
28
|
2163.3568
|
(5/4)28/5
|
29
|
2240.6195
|
(5/4)29/5
|
30
|
2317.8823
|
(5/4)6 = 15625/4096
|
31
|
2395.1450
|
(5/4)31/5
|
32
|
2472.4078
|
(5/4)32/5
|
33
|
2549.6705
|
(5/4)33/5
|
34
|
2626.9333
|
(5/4)34/5
|
35
|
2704.1960
|
(5/4)7 = 78125/16384
|
36
|
2781.4587
|
(5/4)36/5
|
37
|
2858.7215
|
(5/4)37/5
|
38
|
2935.9842
|
(5/4)38/5
|
39
|
3013.2470
|
(5/4)39/5
|
40
|
3090.5097
|
(5/4)8 = 390625/65536
|
41
|
3167.7725
|
(5/4)41/5
|
42
|
3245.0352
|
(5/4)42/5
|
43
|
3322.2979
|
(5/4)43/5
|
44
|
3399.5607
|
(5/4)44/5
|
45
|
3476.8234
|
(5/4)9 = 1953125/262144
|
46
|
3554.0862
|
(5/4)46/5
|
47
|
3631.3489
|
(5/4)47/5
|
48
|
3708.6117
|
(5/4)48/5
|
49
|
3785.8744
|
(5/4)49/5
|
50
|
3863.1371
|
(5/4)10 = 9765625/1048576
|
51
|
3940.3999
|
(5/4)51/5
|
52
|
4017.6626
|
(5/4)52/5
|
53
|
4094.9254
|
(5/4)53/5
|
54
|
4172.1881
|
(5/4)54/5
|
55
|
4249.4509
|
(5/4)11 = 48828125/4194304
|
56
|
4326.7136
|
(5/4)56/5
|
57
|
4403.9763
|
(5/4)57/5
|
58
|
4481.2391
|
(5/4)58/5
|
59
|
4558.5018
|
(5/4)59/5
|
60
|
4635.7646
|
(5/4)12 = 244140625/16777216
|
61
|
4713.0273
|
(5/4)61/5
|
62
|
4790.2901
|
(5/4)62/5
|
63
|
4867.5528
|
(5/4)63/5
|
64
|
4944.8155
|
(5/4)64/5
|
65
|
5022.0783
|
(5/4)13 = 1220703125/67108864
|
5ED5/4 as a generator
Valentine
Aside from 2100875/2097152, valentine temperament tempers out 126/125, 1029/1024, 6144/6125, and 64827/64000 in the 7-limit. It can be described as the 31&46 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 22/21) can serve as its generator. In the 11-limit, it tempers out 121/120, 176/175, and 441/440.
Tertiaseptal
Aside from 2100875/2097152, tertiaseptal temperament tempers out 2401/2400, 65625/65536, and 703125/702464 in the 7-limit. It can be described as the 31&171 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 243/242, 375/374, 441/440, 625/624, and 3584/3575.
Tertia
Aside from 2100875/2097152, tertia temperament tempers out 385/384, 1331/1323, and 1375/1372 in the 11-limit. It can be described as the 31&140 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 352/351, 385/384, 561/560, 625/624, and 715/714.