9L 2s (3/1-equivalent): Difference between revisions
Jump to navigation
Jump to search
Wikispaces>xenwolf **Imported revision 602895540 - Original comment: removed visual-editor garbage** |
Wikispaces>FREEZE No edit summary |
||
Line 1: | Line 1: | ||
Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum. | |||
{| class="wikitable" | |||
|- | |||
! colspan="7" | Generator | |||
! | cents | |||
! | L | |||
! | s | |||
! | 3g | |||
! | Notes | |||
|- | |||
| style="text-align:center;" | 4\9 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 845.313 | |||
| style="text-align:center;" | 211.328 | |||
| style="text-align:center;" | 0.00 | |||
| style="text-align:center;" | 633.985 | |||
| style="text-align:center;" | L=1 s=0 | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 29\65 | |||
| style="text-align:center;" | 848.5645 | |||
| style="text-align:center;" | 204.826 | |||
| style="text-align:center;" | 29.261 | |||
| style="text-align:center;" | 643.739 | |||
| style="text-align:center;" | L=7 s=1 | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 25\56 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 849.087 | |||
| style="text-align:center;" | 203.78 | |||
| style="text-align:center;" | 33.9635 | |||
| style="text-align:center;" | 645.306 | |||
| style="text-align:center;" | L=6 s=1 | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 46\103 | |||
| style="text-align:center;" | 849.417 | |||
| style="text-align:center;" | 203.121 | |||
| style="text-align:center;" | 36.931 | |||
| style="text-align:center;" | 646.295 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 21\47 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style |
Revision as of 00:00, 17 July 2018
Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.
Generator | cents | L | s | 3g | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4\9 | 845.313 | 211.328 | 0.00 | 633.985 | L=1 s=0 | ||||||
29\65 | 848.5645 | 204.826 | 29.261 | 643.739 | L=7 s=1 | ||||||
25\56 | 849.087 | 203.78 | 33.9635 | 645.306 | L=6 s=1 | ||||||
46\103 | 849.417 | 203.121 | 36.931 | 646.295 | |||||||
21\47 | 849.81 | 202.336 | 40.467 | 647.474 | L=5 s=1 | ||||||
59\132 | 850.116 | 201.7225 | 43.226 | 648.394 | |||||||
38\85 | 850.286 | 201.383 | 44.752 | 648.902 | |||||||
55\123 | 850.468 | 201.02 | 46.309 | 649.448 | |||||||
17\38 | 850.875 | 200.206 | 50.051 | 650.669 | L=4 s=1 | ||||||
64\143 | 851.225 | 199.506 | 53.2015 | 651.719 | |||||||
47\105 | 851.351 | 199.252 | 54.342 | 652.099 | |||||||
77\172 | 851.457 | 199.042 | 55.289 | 652.415 | |||||||
30\67 | 851.622 | 198.712 | 56.775 | 652.91 | L=7 s=2 | ||||||
73\163 | 851.796 | 198.363 | 58.342 | 653.432 | |||||||
43\96 | 851.917 | 198.12 | 59.436 | 653.797 | |||||||
56\125 | 852.075 | 197.803 | 60.863 | 654.2725 | |||||||
13\29 | 852.6005 | 196.754 | 65.585 | 655.847 | L=3 s=1 | ||||||
61\136 | 853.083 | 195.7895 | 69.925 | 657.293 | |||||||
48\107 | 853.2135 | 195.528 | 71.101 | 657.685 | |||||||
83\185 | 853.3095 | 195.336 | 71.966 | 657.974 | |||||||
35\78 | 853.441 | 195.072 | 73.152 | 658.369 | |||||||
92\205 | 853.56 | 194.834 | 74.223 | 658.726 | |||||||
57\127 | 853.633 | 194.688 | 74.88 | 658.945 | |||||||
79\176 | 853.718 | 194.518 | 75.646 | 659.20 | |||||||
22\49 | 853.939 | 194.077 | 77.631 | 659.862 | L=5 s=2 | ||||||
75\167 | 854.171 | 193.588 | 79.722 | 660.559 | |||||||
53\118 | 854.268 | 193.419 | 80.591 | 660.849 | |||||||
84\187 | 854.354 | 193.245 | 81.367 | 661.107 | |||||||
31\69 | 854.5015 | 192.952 | 82.694 | 661.55 | L=7 s=3 | ||||||
71\158 | 854.676 | 192.603 | 84.264 | 662.073 | |||||||
40\89 | 854.811 | 192.3325 | 85.481 | 662.479 | |||||||
49\109 | 855.007 | 191.94 | 87.246 | 663.067 | |||||||
9\20 | 855.88 | 190.1955 | 95.098 | 665.684 | L=2 s=1 | ||||||
50\111 | 856.7365 | 188.482 | 102.808 | 668.2545 | |||||||
41\91 | 856.925 | 188.105 | 104.503 | 668.819 | |||||||
73\162 | 857.053 | 187.847 | 105.664 | 669.206 | |||||||
32\71 | 857.737 | 187.517 | 107.152 | 669.7025 | L=7 s=4 | ||||||
87\193 | 857.358 | 187.239 | 108.402 | 670.119 | |||||||
55\122 | 857.85 | 187.0775 | 109.129 | 670.361 | |||||||
78\173 | 857.529 | 186.897 | 109.94 | 670.6315 | |||||||
23\51 | 857.744 | 186.466 | 111.88 | 671.278 | L=5 s=3 | ||||||
83\184 | 857.947 | 186.061 | 113.704 | 671.886 | |||||||
60\133 | 858.025 | 185.925 | 114.403 | 672.119 | |||||||
97\215 | 858.091 | 185.772 | 115.002 | 672.319 | Golden Sub-Arcturus is near here | ||||||
37\82 | 858.199 | 185.557 | 115.972 | 672.643 | |||||||
88\195 | 858.318 | 185.318 | 117.043 | 672.9995 | |||||||
51\113 | 858.4045 | 185.146 | 117.82 | 673.258 | |||||||
65\144 | 858.521 | 184.912 | 118.872 | 673.609 | |||||||
14\31 | 858.947 | 184.06 | 122.707 | 674.882 | L=3 s=2 | ||||||
61\135 | 859.402 | 183.151 | 126.797 | 676,251 | |||||||
47\104 | 859.537 | 182.88 | 128.016 | 676.657 | |||||||
80\177 | 859.641 | 182.674 | 128.946 | 676.967 | |||||||
33\73 | 859.788 | 182.379 | 130.271 | 677.409 | L=7 s=5 | ||||||
85\188 | 859.9265 | 182.102 | 131.518 | 677.824 | |||||||
52\115 | 860.014 | 181.926 | 132.31 | 678.088 | |||||||
71\157 | 860.12 | 181.715 | 133.258 | 678.404 | |||||||
19\42 | 860.408 | 181.139 | 135.854 | 679.27 | L=4 s=3 | ||||||
62\137 | 860.739 | 180.4775 | 138.829 | 680.261 | |||||||
43\95 | 860.885 | 180.185 | 140.144 | 680.70 | |||||||
67\148 | 861.02 | 179.915 | 141.3615 | 681.1055 | |||||||
24\53 | 861.263 | 179.43 | 143.544 | 681.833 | L=5 s=4 | ||||||
53\117 | 861.569 | 178.816 | 146.304 | 682.753 | |||||||
29\64 | 861.823 | 178.308 | 148.59 | 683.515 | L=6 s=5 | ||||||
34\75 | 862.22 | 177.516 | 152.156 | 684.704 | L=7 s=6 | ||||||
5\11 | 864.525 | 172.905 | 691.62 | L=1 s=1 |