9L 2s (3/1-equivalent): Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 602895540 - Original comment: removed visual-editor garbage**
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 12:36:41 UTC</tt>.<br>
: The original revision id was <tt>602895540</tt>.<br>
: The revision comment was: <tt>removed visual-editor garbage</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.


||||||||||||||~ Generator ||~ cents ||~ L ||~ s ||~ 3g ||~ Notes ||
{| class="wikitable"
||= 4\9 ||=  ||=  ||=  ||=  ||=  ||=  ||= 845.313 ||= 211.328 ||= 0.00 ||= 633.985 ||= L=1 s=0 ||
|-
||=  ||=  ||=  ||=  ||=  ||=  ||= 29\65 ||= 848.5645 ||= 204.826 ||= 29.261 ||= 643.739 ||= L=7 s=1 ||
! colspan="7" | Generator
||=  ||=  ||=  ||=  ||=  ||= 25\56 ||=  ||= 849.087 ||= 203.78 ||= 33.9635 ||= 645.306 ||= L=6 s=1 ||
! | cents
||=  ||=  ||=  ||=  ||=  ||=  ||= 46\103 ||= 849.417 ||= 203.121 ||= 36.931 ||= 646.295 ||=  ||
! | L
||=  ||=  ||=  ||=  ||= 21\47 ||=  ||=  ||= 849.81 ||= 202.336 ||= 40.467 ||= 647.474 ||= L=5 s=1 ||
! | s
||=  ||=  ||=  ||=  ||=  ||=  ||= 59\132 ||= 850.116 ||= 201.7225 ||= 43.226 ||= 648.394 ||=  ||
! | 3g
||=  ||=  ||=  ||=  ||=  ||= 38\85 ||=  ||= 850.286 ||= 201.383 ||= 44.752 ||= 648.902 ||=  ||
! | Notes
||=  ||=  ||=  ||=  ||=  ||=  ||= 55\123 ||= 850.468 ||= 201.02 ||= 46.309 ||= 649.448 ||=  ||
|-
||=  ||=  ||=  ||= 17\38 ||=  ||=  ||=  ||= 850.875 ||= 200.206 ||= 50.051 ||= 650.669 ||= L=4 s=1 ||
| style="text-align:center;" | 4\9
||=  ||=  ||=  ||=  ||=  ||=  ||= 64\143 ||= 851.225 ||= 199.506 ||= 53.2015 ||= 651.719 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 47\105 ||=  ||= 851.351 ||= 199.252 ||= 54.342 ||= 652.099 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 77\172 ||= 851.457 ||= 199.042 ||= 55.289 ||= 652.415 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||= 30\67 ||=  ||=  ||= 851.622 ||= 198.712 ||= 56.775 ||= 652.91 ||= L=7 s=2 ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 73\163 ||= 851.796 ||= 198.363 ||= 58.342 ||= 653.432 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 43\96 ||=  ||= 851.917 ||= 198.12 ||= 59.436 ||= 653.797 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 56\125 ||= 852.075 ||= 197.803 ||= 60.863 ||= 654.2725 ||=  ||
| style="text-align:center;" | 845.313
||=  ||=  ||= 13\29 ||=  ||=  ||=  ||=  ||= 852.6005 ||= 196.754 ||= 65.585 ||= 655.847 ||= L=3 s=1 ||
| style="text-align:center;" | 211.328
||=  ||=  ||=  ||=  ||=  ||=  ||= 61\136 ||= 853.083 ||= 195.7895 ||= 69.925 ||= 657.293 ||=  ||
| style="text-align:center;" | 0.00
||=  ||=  ||=  ||=  ||=  ||= 48\107 ||=  ||= 853.2135 ||= 195.528 ||= 71.101 ||= 657.685 ||=  ||
| style="text-align:center;" | 633.985
||=  ||=  ||=  ||=  ||=  ||=  ||= 83\185 ||= 853.3095 ||= 195.336 ||= 71.966 ||= 657.974 ||=  ||
| style="text-align:center;" | L=1 s=0
||=  ||=  ||=  ||=  ||= 35\78 ||=  ||=  ||= 853.441 ||= 195.072 ||= 73.152 ||= 658.369 ||=  ||
|-
||=  ||=  ||=  ||=  ||=  ||=  ||= 92\205 ||= 853.56 ||= 194.834 ||= 74.223 ||= 658.726 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 57\127 ||=  ||= 853.633 ||= 194.688 ||= 74.88 ||= 658.945 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 79\176 ||= 853.718 ||= 194.518 ||= 75.646 ||= 659.20 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||= 22\49 ||=  ||=  ||=  ||= 853.939 ||= 194.077 ||= 77.631 ||= 659.862 ||= L=5 s=2 ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 75\167 ||= 854.171 ||= 193.588 ||= 79.722 ||= 660.559 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 53\118 ||=  ||= 854.268 ||= 193.419 ||= 80.591 ||= 660.849 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 84\187 ||= 854.354 ||= 193.245 ||= 81.367 ||=
| style="text-align:center;" | 29\65
| style="text-align:center;" | 848.5645
| style="text-align:center;" | 204.826
| style="text-align:center;" | 29.261
| style="text-align:center;" | 643.739
| style="text-align:center;" | L=7 s=1
|-
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" | 25\56
| style="text-align:center;" |
| style="text-align:center;" | 849.087
| style="text-align:center;" | 203.78
| style="text-align:center;" | 33.9635
| style="text-align:center;" | 645.306
| style="text-align:center;" | L=6 s=1
|-
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" | 46\103
| style="text-align:center;" | 849.417
| style="text-align:center;" | 203.121
| style="text-align:center;" | 36.931
| style="text-align:center;" | 646.295
| style="text-align:center;" |
|-
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" | 21\47
| style="text-align:center;" |
| style="text-align:center;" |
| style

Revision as of 00:00, 17 July 2018

Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.

Generator cents L s 3g Notes
4\9 845.313 211.328 0.00 633.985 L=1 s=0
29\65 848.5645 204.826 29.261 643.739 L=7 s=1
25\56 849.087 203.78 33.9635 645.306 L=6 s=1
46\103 849.417 203.121 36.931 646.295
21\47 849.81 202.336 40.467 647.474 L=5 s=1
59\132 850.116 201.7225 43.226 648.394
38\85 850.286 201.383 44.752 648.902
55\123 850.468 201.02 46.309 649.448
17\38 850.875 200.206 50.051 650.669 L=4 s=1
64\143 851.225 199.506 53.2015 651.719
47\105 851.351 199.252 54.342 652.099
77\172 851.457 199.042 55.289 652.415
30\67 851.622 198.712 56.775 652.91 L=7 s=2
73\163 851.796 198.363 58.342 653.432
43\96 851.917 198.12 59.436 653.797
56\125 852.075 197.803 60.863 654.2725
13\29 852.6005 196.754 65.585 655.847 L=3 s=1
61\136 853.083 195.7895 69.925 657.293
48\107 853.2135 195.528 71.101 657.685
83\185 853.3095 195.336 71.966 657.974
35\78 853.441 195.072 73.152 658.369
92\205 853.56 194.834 74.223 658.726
57\127 853.633 194.688 74.88 658.945
79\176 853.718 194.518 75.646 659.20
22\49 853.939 194.077 77.631 659.862 L=5 s=2
75\167 854.171 193.588 79.722 660.559
53\118 854.268 193.419 80.591 660.849
84\187 854.354 193.245 81.367 661.107
31\69 854.5015 192.952 82.694 661.55 L=7 s=3
71\158 854.676 192.603 84.264 662.073
40\89 854.811 192.3325 85.481 662.479
49\109 855.007 191.94 87.246 663.067
9\20 855.88 190.1955 95.098 665.684 L=2 s=1
50\111 856.7365 188.482 102.808 668.2545
41\91 856.925 188.105 104.503 668.819
73\162 857.053 187.847 105.664 669.206
32\71 857.737 187.517 107.152 669.7025 L=7 s=4
87\193 857.358 187.239 108.402 670.119
55\122 857.85 187.0775 109.129 670.361
78\173 857.529 186.897 109.94 670.6315
23\51 857.744 186.466 111.88 671.278 L=5 s=3
83\184 857.947 186.061 113.704 671.886
60\133 858.025 185.925 114.403 672.119
97\215 858.091 185.772 115.002 672.319 Golden Sub-Arcturus is near here
37\82 858.199 185.557 115.972 672.643
88\195 858.318 185.318 117.043 672.9995
51\113 858.4045 185.146 117.82 673.258
65\144 858.521 184.912 118.872 673.609
14\31 858.947 184.06 122.707 674.882 L=3 s=2
61\135 859.402 183.151 126.797 676,251
47\104 859.537 182.88 128.016 676.657
80\177 859.641 182.674 128.946 676.967
33\73 859.788 182.379 130.271 677.409 L=7 s=5
85\188 859.9265 182.102 131.518 677.824
52\115 860.014 181.926 132.31 678.088
71\157 860.12 181.715 133.258 678.404
19\42 860.408 181.139 135.854 679.27 L=4 s=3
62\137 860.739 180.4775 138.829 680.261
43\95 860.885 180.185 140.144 680.70
67\148 861.02 179.915 141.3615 681.1055
24\53 861.263 179.43 143.544 681.833 L=5 s=4
53\117 861.569 178.816 146.304 682.753
29\64 861.823 178.308 148.59 683.515 L=6 s=5
34\75 862.22 177.516 152.156 684.704 L=7 s=6
5\11 864.525 172.905 691.62 L=1 s=1