Semicomma family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 149775839 - Original comment: dto.**
Wikispaces>xenwolf
**Imported revision 149775855 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-06-21 04:28:50 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-06-21 04:29:22 UTC</tt>.<br>
: The original revision id was <tt>149775839</tt>.<br>
: The original revision id was <tt>149775855</tt>.<br>
: The revision comment was: <tt>dto.</tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64. [[53edo]] is an excellent orson tuning, and [[84edo]] makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five cents, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64. [[53edo]] is an excellent orson tuning, and [[84edo]] makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.


==Seven limit children==
==Seven limit children==
Line 15: Line 15:
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Semicomma family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; is an excellent orson tuning, and &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt; makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five cents, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Semicomma family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; is an excellent orson tuning, and &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt; makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;

Revision as of 04:29, 21 June 2010

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author xenwolf and made on 2010-06-21 04:29:22 UTC.
The original revision id was 149775855.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7>. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64. [[53edo]] is an excellent orson tuning, and [[84edo]] makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.

==Seven limit children==
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 64625/65536 leads to orwell, but we could also add 1029/1024, leading to the 31&159 temperament with wedgie <<21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&243 temperament with wedgie <<28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&243 temperament with wedgie <<7 -3 61 -21 77 150||.

===Orwell===
So called because 19/84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]] and [[53edo|53-EDO]]. It's reasonable in the [[7-limit]] and naturally extends into the [[11-limit]].

Original HTML content:

<html><head><title>Semicomma family</title></head><body>The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the <a class="wiki_link" href="/5-limit">5-limit</a> temperament tempering it out, has a <a class="wiki_link" href="/generator">generator</a> of 75/64. <a class="wiki_link" href="/53edo">53edo</a> is an excellent orson tuning, and <a class="wiki_link" href="/84edo">84edo</a> makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five <a class="wiki_link" href="/cent">cent</a>s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2>
The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Adding 64625/65536 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Seven limit children-Orwell"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orwell</h3>
So called because 19/84 (as a <a class="wiki_link" href="/fraction%20of%20the%20octave">fraction of the octave</a>) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a> and <a class="wiki_link" href="/53edo">53-EDO</a>. It's reasonable in the <a class="wiki_link" href="/7-limit">7-limit</a> and naturally extends into the <a class="wiki_link" href="/11-limit">11-limit</a>.</body></html>