User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 5: | Line 5: | ||
= Title1 = | = Title1 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
64edo's approximations of 3/1, 5/1, 7/1, 11/1 and 17/1 are improved by [[180ed7]], a [[Octave shrinking|compressed-octave]] version of 64edo. The trade-off is a slightly worse 2/1 and 13/1. | |||
; [[ | [[149ed5]] can also be used: it is similar to 180ed7 but both the improvements and shortcomings are amplified. Most notably its 2/1 isn’t as accurate as 180ed7's. | ||
If one prefers a ''[[Octave stretch|stretched-octave]]'', 64edo's approximations of 3/1, 5/1, 11/1 and 17/1 are improved by [[221ed11]], a stretched version of 64edo. The trade-off is a slightly worse 2/1 and 13/1. | |||
[[47ed5/3]] can also be used: it is similar to 221ed11 but both the improvements and shortcomings are amplified. Most notably its 2/1 is not as accurate as 221ed11's. | |||
What follows is a comparison of stretched- and compressed-octave 64edo tunings. | |||
; [[ed7|179ed7]] | |||
* Octave size: NNN{{c}} | * Octave size: NNN{{c}} | ||
Stretching the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 179ed7 does this. So does the tuning 326zpi whose octave is identical within 0.3{{c}}. | |||
{{Harmonics in equal| | {{Harmonics in equal|179|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 179ed7}} | ||
{{Harmonics in equal| | {{Harmonics in equal|179|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 179ed7 (continued)}} | ||
; [[ | ; [[ed6|165ed6]] | ||
* | * Octave size: NNN{{c}} | ||
Stretching the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 165ed6 does this. | |||
{{Harmonics in | {{Harmonics in equal|165|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in | {{Harmonics in equal|165|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 165ed6 (continued)}} | ||
; [[ | ; [[ed12|229ed12]] | ||
* | * Octave size: NNN{{c}} | ||
Stretching the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 229ed12 does this. So does the tuning [[equal tuning|221ed11]] whose octave is identical within 0.1{{c}}. | |||
{{Harmonics in equal| | {{Harmonics in equal|229|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 229ed12}} | ||
{{Harmonics in equal| | {{Harmonics in equal|229|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 229ed12 (continued)}} | ||
; [[zpi| | ; [[zpi|327zpi]] | ||
* Step size: | * Step size: 18.767{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 327zpi does this. | |||
{{Harmonics in cet| | {{Harmonics in cet|18.767|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 327zpi}} | ||
{{Harmonics in cet| | {{Harmonics in cet|18.767|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 327zpi (continued)}} | ||
; | ; [[WE|64et, 11-limit WE tuning]] | ||
* Step size: | * Step size: 18.755{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. | |||
{{Harmonics in | {{Harmonics in cet|18.755|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 64et, 11-limit WE tuning}} | ||
{{Harmonics in | {{Harmonics in cet|18.755|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 64et, 11-limit WE tuning (continued)}} | ||
; | ; 64edo | ||
* Step size: | * Step size: 18.750{{c}}, octave size: 1200.00{{c}} | ||
Pure-octaves 64edo approximates all harmonics up to 16 within NNN{{c}}. The octave of 64edo's 13-limit [[WE]] tuning differs by only 0.13{{c}} from pure. | |||
{{Harmonics in | {{Harmonics in equal|64|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 64edo}} | ||
{{Harmonics in | {{Harmonics in equal|64|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 64edo (continued)}} | ||
; [[ | ; [[zpi|328zpi]] | ||
* Step size: | * Step size: 18.721{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 328zpi does this. | |||
{{Harmonics in cet| | {{Harmonics in cet|18.721|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 328zpi}} | ||
{{Harmonics in cet| | {{Harmonics in cet|18.721|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 328zpi (continued)}} | ||
; [[ | ; [[ed7|180ed7]] | ||
* | * Octave size: NNN{{c}} | ||
Compressing the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 180ed7 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|180|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 180ed7}} | ||
{{Harmonics in equal| | {{Harmonics in equal|180|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 180ed7 (continued)}} | ||
; [[ | ; [[ed12|230ed12]] | ||
* | * Octave size: NNN{{c}} | ||
Compressing the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 230ed12 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|230|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 230ed12}} | ||
{{Harmonics in equal| | {{Harmonics in equal|230|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 230ed12 (continued)}} | ||
; [[ | ; [[ed5|149ed5]] | ||
* Step size: | * Step size: Octave size: NNN{{c}} | ||
Compressing the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 149ed5 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|12|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 149ed5}} | ||
{{Harmonics in equal| | {{Harmonics in equal|12|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 149ed5 (continued)}} | ||
= Title2 = | = Title2 = |
Revision as of 07:09, 2 September 2025
Quick link
User:BudjarnLambeth/Draft related tunings section
Title1
Octave stretch or compression
64edo's approximations of 3/1, 5/1, 7/1, 11/1 and 17/1 are improved by 180ed7, a compressed-octave version of 64edo. The trade-off is a slightly worse 2/1 and 13/1.
149ed5 can also be used: it is similar to 180ed7 but both the improvements and shortcomings are amplified. Most notably its 2/1 isn’t as accurate as 180ed7's.
If one prefers a stretched-octave, 64edo's approximations of 3/1, 5/1, 11/1 and 17/1 are improved by 221ed11, a stretched version of 64edo. The trade-off is a slightly worse 2/1 and 13/1.
47ed5/3 can also be used: it is similar to 221ed11 but both the improvements and shortcomings are amplified. Most notably its 2/1 is not as accurate as 221ed11's.
What follows is a comparison of stretched- and compressed-octave 64edo tunings.
- Octave size: NNN ¢
Stretching the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 179ed7 does this. So does the tuning 326zpi whose octave is identical within 0.3 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.50 | -1.11 | +8.99 | -0.92 | +3.39 | +0.00 | -5.33 | -2.22 | +3.58 | +7.96 | +7.88 |
Relative (%) | +23.9 | -5.9 | +47.8 | -4.9 | +18.0 | +0.0 | -28.3 | -11.8 | +19.0 | +42.3 | +41.9 | |
Steps (reduced) |
64 (64) |
101 (101) |
128 (128) |
148 (148) |
165 (165) |
179 (0) |
191 (12) |
202 (23) |
212 (33) |
221 (42) |
229 (50) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.05 | +4.50 | -2.02 | -0.83 | +7.13 | +2.28 | +2.78 | +8.08 | -1.11 | -6.37 | -8.04 | -6.44 |
Relative (%) | +5.6 | +23.9 | -10.8 | -4.4 | +37.9 | +12.1 | +14.8 | +42.9 | -5.9 | -33.8 | -42.7 | -34.2 | |
Steps (reduced) |
236 (57) |
243 (64) |
249 (70) |
255 (76) |
261 (82) |
266 (87) |
271 (92) |
276 (97) |
280 (101) |
284 (105) |
288 (109) |
292 (113) |
- Octave size: NNN ¢
Stretching the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 165ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.18 | -3.18 | +6.37 | -3.95 | +0.00 | -3.67 | -9.25 | -6.37 | -0.77 | +3.42 | +3.18 |
Relative (%) | +16.9 | -16.9 | +33.9 | -21.0 | +0.0 | -19.5 | -49.2 | -33.9 | -4.1 | +18.2 | +16.9 | |
Steps (reduced) |
64 (64) |
101 (101) |
128 (128) |
148 (148) |
165 (0) |
179 (14) |
191 (26) |
202 (37) |
212 (47) |
221 (56) |
229 (64) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.79 | -0.49 | -7.14 | -6.07 | +1.77 | -3.18 | -2.79 | +2.41 | -6.86 | +6.60 | +4.85 | +6.37 |
Relative (%) | -20.2 | -2.6 | -38.0 | -32.3 | +9.4 | -16.9 | -14.8 | +12.8 | -36.5 | +35.1 | +25.8 | +33.9 | |
Steps (reduced) |
236 (71) |
243 (78) |
249 (84) |
255 (90) |
261 (96) |
266 (101) |
271 (106) |
276 (111) |
280 (115) |
285 (120) |
289 (124) |
293 (128) |
- Octave size: NNN ¢
Stretching the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 229ed12 does this. So does the tuning 221ed11 whose octave is identical within 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.29 | -4.59 | +4.59 | -6.01 | -2.29 | -6.16 | +6.88 | -9.17 | -3.72 | +0.35 | +0.00 |
Relative (%) | +12.2 | -24.4 | +24.4 | -32.0 | -12.2 | -32.8 | +36.6 | -48.8 | -19.8 | +1.9 | +0.0 | |
Steps (reduced) |
64 (64) |
101 (101) |
128 (128) |
148 (148) |
165 (165) |
179 (179) |
192 (192) |
202 (202) |
212 (212) |
221 (221) |
229 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.07 | -3.87 | +8.19 | +9.17 | -1.85 | -6.88 | -6.55 | -1.42 | +8.04 | +2.64 | +0.83 | +2.29 |
Relative (%) | -37.6 | -20.6 | +43.6 | +48.8 | -9.9 | -36.6 | -34.9 | -7.6 | +42.8 | +14.1 | +4.4 | +12.2 | |
Steps (reduced) |
236 (7) |
243 (14) |
250 (21) |
256 (27) |
261 (32) |
266 (37) |
271 (42) |
276 (47) |
281 (52) |
285 (56) |
289 (60) |
293 (64) |
- Step size: 18.767 ¢, octave size: NNN ¢
Stretching the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 327zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.09 | -6.49 | +2.18 | -8.80 | -5.40 | +9.23 | +3.26 | +5.79 | -7.71 | -3.81 | -4.31 |
Relative (%) | +5.8 | -34.6 | +11.6 | -46.9 | -28.8 | +49.2 | +17.4 | +30.9 | -41.1 | -20.3 | -23.0 | |
Step | 64 | 101 | 128 | 148 | 165 | 180 | 192 | 203 | 212 | 221 | 229 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.25 | -8.44 | +3.48 | +4.35 | -6.77 | +6.88 | +7.11 | -6.62 | +2.75 | -2.72 | -4.61 | -3.22 |
Relative (%) | +38.6 | -45.0 | +18.6 | +23.2 | -36.1 | +36.7 | +37.9 | -35.3 | +14.6 | -14.5 | -24.6 | -17.2 | |
Step | 237 | 243 | 250 | 256 | 261 | 267 | 272 | 276 | 281 | 285 | 289 | 293 |
- Step size: 18.755 ¢, octave size: NNN ¢
Stretching the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 11-limit WE tuning and 11-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.32 | -7.70 | +0.64 | +8.18 | -7.38 | +7.07 | +0.96 | +3.35 | +8.50 | -6.46 | -7.06 |
Relative (%) | +1.7 | -41.1 | +3.4 | +43.6 | -39.3 | +37.7 | +5.1 | +17.9 | +45.3 | -34.5 | -37.6 | |
Step | 64 | 101 | 128 | 149 | 165 | 180 | 192 | 203 | 213 | 221 | 229 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.41 | +7.39 | +0.48 | +1.28 | +8.85 | +3.67 | +3.85 | +8.82 | -0.63 | -6.14 | -8.08 | -6.74 |
Relative (%) | +23.5 | +39.4 | +2.6 | +6.8 | +47.2 | +19.6 | +20.5 | +47.0 | -3.3 | -32.8 | -43.1 | -35.9 | |
Step | 237 | 244 | 250 | 256 | 262 | 267 | 272 | 277 | 281 | 285 | 289 | 293 |
- 64edo
- Step size: 18.750 ¢, octave size: 1200.00 ¢
Pure-octaves 64edo approximates all harmonics up to 16 within NNN ¢. The octave of 64edo's 13-limit WE tuning differs by only 0.13 ¢ from pure.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -8.21 | +0.00 | +7.44 | -8.21 | +6.17 | +0.00 | +2.34 | +7.44 | -7.57 | -8.21 |
Relative (%) | +0.0 | -43.8 | +0.0 | +39.7 | -43.8 | +32.9 | +0.0 | +12.5 | +39.7 | -40.4 | -43.8 | |
Steps (reduced) |
64 (0) |
101 (37) |
128 (0) |
149 (21) |
165 (37) |
180 (52) |
192 (0) |
203 (11) |
213 (21) |
221 (29) |
229 (37) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.22 | +6.17 | -0.77 | +0.00 | +7.54 | +2.34 | +2.49 | +7.44 | -2.03 | -7.57 | +9.23 | -8.21 |
Relative (%) | +17.2 | +32.9 | -4.1 | +0.0 | +40.2 | +12.5 | +13.3 | +39.7 | -10.8 | -40.4 | +49.2 | -43.8 | |
Steps (reduced) |
237 (45) |
244 (52) |
250 (58) |
256 (0) |
262 (6) |
267 (11) |
272 (16) |
277 (21) |
281 (25) |
285 (29) |
290 (34) |
293 (37) |
- Step size: 18.721 ¢, octave size: NNN ¢
Compressing the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 328zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.86 | +7.59 | -3.71 | +3.12 | +5.73 | +0.95 | -5.57 | -3.55 | +1.26 | +4.74 | +3.87 |
Relative (%) | -9.9 | +40.5 | -19.8 | +16.6 | +30.6 | +5.1 | -29.7 | -18.9 | +6.7 | +25.3 | +20.7 | |
Step | 64 | 102 | 128 | 149 | 166 | 180 | 192 | 203 | 213 | 222 | 230 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.65 | -0.90 | -8.02 | -7.42 | -0.05 | -5.40 | -5.40 | -0.60 | +8.54 | +2.89 | +0.82 | +2.02 |
Relative (%) | -19.5 | -4.8 | -42.8 | -39.7 | -0.3 | -28.9 | -28.9 | -3.2 | +45.6 | +15.4 | +4.4 | +10.8 | |
Step | 237 | 244 | 250 | 256 | 262 | 267 | 272 | 277 | 282 | 286 | 290 | 294 |
- Octave size: NNN ¢
Compressing the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 180ed7 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.20 | +7.05 | -4.39 | +2.33 | +4.85 | +0.00 | -6.59 | -4.62 | +0.13 | +3.57 | +2.66 |
Relative (%) | -11.7 | +37.6 | -23.5 | +12.4 | +25.9 | +0.0 | -35.2 | -24.7 | +0.7 | +19.1 | +14.2 | |
Steps (reduced) |
64 (64) |
102 (102) |
128 (128) |
149 (149) |
166 (166) |
180 (0) |
192 (12) |
203 (23) |
213 (33) |
222 (42) |
230 (50) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.91 | -2.20 | -9.34 | -8.78 | -1.44 | -6.82 | -6.84 | -2.06 | +7.05 | +1.37 | -0.72 | +0.46 |
Relative (%) | -26.2 | -11.7 | -49.9 | -46.9 | -7.7 | -36.4 | -36.6 | -11.0 | +37.6 | +7.3 | -3.9 | +2.5 | |
Steps (reduced) |
237 (57) |
244 (64) |
250 (70) |
256 (76) |
262 (82) |
267 (87) |
272 (92) |
277 (97) |
282 (102) |
286 (106) |
290 (110) |
294 (114) |
- Octave size: NNN ¢
Compressing the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 230ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.93 | +5.87 | -5.87 | +0.60 | +2.93 | -2.08 | -8.80 | -6.97 | -2.33 | +1.00 | +0.00 |
Relative (%) | -15.7 | +31.4 | -31.4 | +3.2 | +15.7 | -11.1 | -47.1 | -37.2 | -12.5 | +5.4 | +0.0 | |
Steps (reduced) |
64 (64) |
102 (102) |
128 (128) |
149 (149) |
166 (166) |
180 (180) |
192 (192) |
203 (203) |
213 (213) |
222 (222) |
230 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.64 | -5.01 | +6.47 | +6.97 | -4.47 | +8.80 | +8.72 | -5.26 | +3.79 | -1.93 | -4.07 | -2.93 |
Relative (%) | -40.9 | -26.8 | +34.6 | +37.2 | -23.9 | +47.1 | +46.6 | -28.1 | +20.3 | -10.3 | -21.8 | -15.7 | |
Steps (reduced) |
237 (7) |
244 (14) |
251 (21) |
257 (27) |
262 (32) |
268 (38) |
273 (43) |
277 (47) |
282 (52) |
286 (56) |
290 (60) |
294 (64) |
- Step size: Octave size: NNN ¢
Compressing the octave of 64edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 149ed5 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Steps (reduced) |
12 (0) |
19 (7) |
24 (0) |
28 (4) |
31 (7) |
34 (10) |
36 (0) |
38 (2) |
40 (4) |
42 (6) |
43 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Steps (reduced) |
44 (8) |
46 (10) |
47 (11) |
48 (0) |
49 (1) |
50 (2) |
51 (3) |
52 (4) |
53 (5) |
54 (6) |
54 (6) |
55 (7) |
Title2
Lab
Place holder
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | -102 | -86 | -69 | +49 | +59 | -105 | +2 | -28 | -130 | +55 |
Relative (%) | +0.0 | -34.0 | -28.8 | -22.9 | +16.2 | +19.8 | -35.0 | +0.8 | -9.4 | -43.2 | +18.3 | |
Step | 4 | 6 | 9 | 11 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.6 | +3.2 | +10.0 | +11.3 | -3.0 | +15.1 | +11.6 | +3.4 | +10.6 | +8.8 | -14.5 |
Relative (%) | -5.2 | +10.4 | +32.4 | +36.7 | -9.8 | +49.0 | +37.6 | +11.0 | +34.6 | +28.6 | -47.1 | |
Steps (reduced) |
39 (39) |
62 (62) |
91 (91) |
110 (110) |
135 (135) |
145 (5) |
160 (20) |
166 (26) |
177 (37) |
190 (50) |
193 (53) |
Possible tunings to be used on each page
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
- High-priority
64edo
- 179ed7 (octave is identical to 326zpi within 0.3 ¢)
- 165ed6
- 229ed12 (octave is identical to 221ed11 within 0.1 ¢)
- 327zpi (18.767c)
- 11-limit WE (18.755c)
pure octaves 64edo (octave is identical to 13-limit WE within 0.13 ¢
- 328zpi (18.721c)
- 180ed7
- 230ed12
- 149ed5
- Medium priority
25edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -2.3 | +18.0 | -8.8 | +0.0 | -11.9 | -2.3 | -23.3 | +18.0 | +23.5 |
Relative (%) | +0.0 | +37.6 | +0.0 | -4.8 | +37.6 | -18.4 | +0.0 | -24.8 | -4.8 | -48.6 | +37.6 | +48.9 | |
Steps (reduced) |
25 (0) |
40 (15) |
50 (0) |
58 (8) |
65 (15) |
70 (20) |
75 (0) |
79 (4) |
83 (8) |
86 (11) |
90 (15) |
93 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
26edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -9.6 | +0.0 | -17.1 | -9.6 | +0.4 | +0.0 | -19.3 | -17.1 | +2.5 | -9.6 | -9.8 |
Relative (%) | +0.0 | -20.9 | +0.0 | -37.0 | -20.9 | +0.9 | +0.0 | -41.8 | -37.0 | +5.5 | -20.9 | -21.1 | |
Steps (reduced) |
26 (0) |
41 (15) |
52 (0) |
60 (8) |
67 (15) |
73 (21) |
78 (0) |
82 (4) |
86 (8) |
90 (12) |
93 (15) |
96 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
29edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +1.5 | +0.0 | -13.9 | +1.5 | -17.1 | +0.0 | +3.0 | -13.9 | -13.4 | +1.5 | -12.9 |
Relative (%) | +0.0 | +3.6 | +0.0 | -33.6 | +3.6 | -41.3 | +0.0 | +7.2 | -33.6 | -32.4 | +3.6 | -31.3 | |
Steps (reduced) |
29 (0) |
46 (17) |
58 (0) |
67 (9) |
75 (17) |
81 (23) |
87 (0) |
92 (5) |
96 (9) |
100 (13) |
104 (17) |
107 (20) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
30edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | -3.9 | +13.7 | +8.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +45.1 | +0.0 | +34.2 | +45.1 | -22.1 | +0.0 | -9.8 | +34.2 | +21.7 | +45.1 | -1.3 | |
Steps (reduced) |
30 (0) |
48 (18) |
60 (0) |
70 (10) |
78 (18) |
84 (24) |
90 (0) |
95 (5) |
100 (10) |
104 (14) |
108 (18) |
111 (21) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
34edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +3.9 | +0.0 | +1.9 | +3.9 | -15.9 | +0.0 | +7.9 | +1.9 | +13.4 | +3.9 | +6.5 |
Relative (%) | +0.0 | +11.1 | +0.0 | +5.4 | +11.1 | -45.0 | +0.0 | +22.3 | +5.4 | +37.9 | +11.1 | +18.5 | |
Steps (reduced) |
34 (0) |
54 (20) |
68 (0) |
79 (11) |
88 (20) |
95 (27) |
102 (0) |
108 (6) |
113 (11) |
118 (16) |
122 (20) |
126 (24) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
35edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -16.2 | +0.0 | -9.2 | -16.2 | -8.8 | +0.0 | +1.8 | -9.2 | -2.7 | -16.2 | +16.6 |
Relative (%) | +0.0 | -47.4 | +0.0 | -26.7 | -47.4 | -25.7 | +0.0 | +5.3 | -26.7 | -8.0 | -47.4 | +48.5 | |
Steps (reduced) |
35 (0) |
55 (20) |
70 (0) |
81 (11) |
90 (20) |
98 (28) |
105 (0) |
111 (6) |
116 (11) |
121 (16) |
125 (20) |
130 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
36edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -2.2 | +0.0 | -3.9 | +13.7 | +15.3 | -2.0 | -7.2 |
Relative (%) | +0.0 | -5.9 | +0.0 | +41.1 | -5.9 | -6.5 | +0.0 | -11.7 | +41.1 | +46.0 | -5.9 | -21.6 | |
Steps (reduced) |
36 (0) |
57 (21) |
72 (0) |
84 (12) |
93 (21) |
101 (29) |
108 (0) |
114 (6) |
120 (12) |
125 (17) |
129 (21) |
133 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
37edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +11.6 | +0.0 | +2.9 | +11.6 | +4.1 | +0.0 | -9.3 | +2.9 | +0.0 | +11.6 | +2.7 |
Relative (%) | +0.0 | +35.6 | +0.0 | +8.9 | +35.6 | +12.8 | +0.0 | -28.7 | +8.9 | +0.1 | +35.6 | +8.4 | |
Steps (reduced) |
37 (0) |
59 (22) |
74 (0) |
86 (12) |
96 (22) |
104 (30) |
111 (0) |
117 (6) |
123 (12) |
128 (17) |
133 (22) |
137 (26) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
38edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -7.2 | +0.0 | -7.4 | -7.2 | +10.1 | +0.0 | -14.4 | -7.4 | -14.5 | -7.2 | +12.1 |
Relative (%) | +0.0 | -22.9 | +0.0 | -23.3 | -22.9 | +32.1 | +0.0 | -45.7 | -23.3 | -45.8 | -22.9 | +38.3 | |
Steps (reduced) |
38 (0) |
60 (22) |
76 (0) |
88 (12) |
98 (22) |
107 (31) |
114 (0) |
120 (6) |
126 (12) |
131 (17) |
136 (22) |
141 (27) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
9edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -35.3 | +0.0 | +13.7 | -35.3 | -35.5 | +0.0 | +62.8 | +13.7 | -18.0 | -35.3 | -40.5 |
Relative (%) | +0.0 | -26.5 | +0.0 | +10.3 | -26.5 | -26.6 | +0.0 | +47.1 | +10.3 | -13.5 | -26.5 | -30.4 | |
Steps (reduced) |
9 (0) |
14 (5) |
18 (0) |
21 (3) |
23 (5) |
25 (7) |
27 (0) |
29 (2) |
30 (3) |
31 (4) |
32 (5) |
33 (6) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
10edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -26.3 | +18.0 | -8.8 | +0.0 | +36.1 | -26.3 | +48.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +15.0 | +0.0 | -21.9 | +15.0 | -7.4 | +0.0 | +30.1 | -21.9 | +40.6 | +15.0 | -0.4 | |
Steps (reduced) |
10 (0) |
16 (6) |
20 (0) |
23 (3) |
26 (6) |
28 (8) |
30 (0) |
32 (2) |
33 (3) |
35 (5) |
36 (6) |
37 (7) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
11edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -47.4 | +0.0 | +50.0 | -47.4 | +13.0 | +0.0 | +14.3 | +50.0 | -5.9 | -47.4 | +32.2 |
Relative (%) | +0.0 | -43.5 | +0.0 | +45.9 | -43.5 | +11.9 | +0.0 | +13.1 | +45.9 | -5.4 | -43.5 | +29.5 | |
Steps (reduced) |
11 (0) |
17 (6) |
22 (0) |
26 (4) |
28 (6) |
31 (9) |
33 (0) |
35 (2) |
37 (4) |
38 (5) |
39 (6) |
41 (8) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
15edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | +36.1 | +13.7 | +8.7 | +18.0 | +39.5 |
Relative (%) | +0.0 | +22.6 | +0.0 | +17.1 | +22.6 | -11.0 | +0.0 | +45.1 | +17.1 | +10.9 | +22.6 | +49.3 | |
Steps (reduced) |
15 (0) |
24 (9) |
30 (0) |
35 (5) |
39 (9) |
42 (12) |
45 (0) |
48 (3) |
50 (5) |
52 (7) |
54 (9) |
56 (11) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
18edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +31.4 | +0.0 | +13.7 | +31.4 | +31.2 | +0.0 | -3.9 | +13.7 | -18.0 | +31.4 | +26.1 |
Relative (%) | +0.0 | +47.1 | +0.0 | +20.5 | +47.1 | +46.8 | +0.0 | -5.9 | +20.5 | -27.0 | +47.1 | +39.2 | |
Steps (reduced) |
18 (0) |
29 (11) |
36 (0) |
42 (6) |
47 (11) |
51 (15) |
54 (0) |
57 (3) |
60 (6) |
62 (8) |
65 (11) |
67 (13) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
48edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | -11.3 | -2.0 | +6.2 | +0.0 | -3.9 | -11.3 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -7.8 | +0.0 | -45.3 | -7.8 | +24.7 | +0.0 | -15.6 | -45.3 | -5.3 | -7.8 | +37.9 | |
Steps (reduced) |
48 (0) |
76 (28) |
96 (0) |
111 (15) |
124 (28) |
135 (39) |
144 (0) |
152 (8) |
159 (15) |
166 (22) |
172 (28) |
178 (34) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
24edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -18.8 | +0.0 | -3.9 | +13.7 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -3.9 | +0.0 | +27.4 | -3.9 | -37.7 | +0.0 | -7.8 | +27.4 | -2.6 | -3.9 | +18.9 | |
Steps (reduced) |
24 (0) |
38 (14) |
48 (0) |
56 (8) |
62 (14) |
67 (19) |
72 (0) |
76 (4) |
80 (8) |
83 (11) |
86 (14) |
89 (17) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
5edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | +18 | +0 | +94 | +18 | -9 | +0 | +36 | +94 | -71 | +18 | +119 |
Relative (%) | +0.0 | +7.5 | +0.0 | +39.0 | +7.5 | -3.7 | +0.0 | +15.0 | +39.0 | -29.7 | +7.5 | +49.8 | |
Steps (reduced) |
5 (0) |
8 (3) |
10 (0) |
12 (2) |
13 (3) |
14 (4) |
15 (0) |
16 (1) |
17 (2) |
17 (2) |
18 (3) |
19 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
6edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +98.0 | +0.0 | +13.7 | +98.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | +98.0 | -40.5 |
Relative (%) | +0.0 | +49.0 | +0.0 | +6.8 | +49.0 | +15.6 | +0.0 | -2.0 | +6.8 | +24.3 | +49.0 | -20.3 | |
Steps (reduced) |
6 (0) |
10 (4) |
12 (0) |
14 (2) |
16 (4) |
17 (5) |
18 (0) |
19 (1) |
20 (2) |
21 (3) |
22 (4) |
22 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
13edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +36.5 | +0.0 | -17.1 | +36.5 | -45.7 | +0.0 | -19.3 | -17.1 | +2.5 | +36.5 | -9.8 |
Relative (%) | +0.0 | +39.5 | +0.0 | -18.5 | +39.5 | -49.6 | +0.0 | -20.9 | -18.5 | +2.7 | +39.5 | -10.6 | |
Steps (reduced) |
13 (0) |
21 (8) |
26 (0) |
30 (4) |
34 (8) |
36 (10) |
39 (0) |
41 (2) |
43 (4) |
45 (6) |
47 (8) |
48 (9) |
- Main: "13edo and optimal octave stretching"
- 2.5.11.13 WE (92.483c)
- 2.5.7.13 WE (92.804c)
- 2.3 WE (91.405c) (good for opposite 7 mapping)
- 38zpi (92.531c)
118edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.26 | +0.00 | +0.13 | -0.26 | -2.72 | +0.00 | -0.52 | +0.13 | -2.17 | -0.26 | +3.54 |
Relative (%) | +0.0 | -2.6 | +0.0 | +1.2 | -2.6 | -26.8 | +0.0 | -5.1 | +1.2 | -21.3 | -2.6 | +34.8 | |
Steps (reduced) |
118 (0) |
187 (69) |
236 (0) |
274 (38) |
305 (69) |
331 (95) |
354 (0) |
374 (20) |
392 (38) |
408 (54) |
423 (69) |
437 (83) |
- 187edt
- 69edf
- 13-limit WE (10.171c)
- Best nearby ZPI(s)
103edo (narrow down edonoi, choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -2.93 | +0.00 | -1.85 | -2.93 | -1.84 | +0.00 | +5.80 | -1.85 | -3.75 | -2.93 | -1.69 |
Relative (%) | +0.0 | -25.1 | +0.0 | -15.9 | -25.1 | -15.8 | +0.0 | +49.8 | -15.9 | -32.1 | -25.1 | -14.5 | |
Steps (reduced) |
103 (0) |
163 (60) |
206 (0) |
239 (33) |
266 (60) |
289 (83) |
309 (0) |
327 (18) |
342 (33) |
356 (47) |
369 (60) |
381 (72) |
- 163edt
- 239ed5
- 266ed6
- 289ed7
- 356ed11
- 369ed12
- 381ed13
- 421ed17
- 466ed23
- 13-limit WE (11.658c)
- Best nearby ZPI(s)
111edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.75 | +0.00 | +2.88 | +0.75 | +4.15 | +0.00 | +1.50 | +2.88 | +0.03 | +0.75 | +2.72 |
Relative (%) | +0.0 | +6.9 | +0.0 | +26.6 | +6.9 | +38.4 | +0.0 | +13.8 | +26.6 | +0.3 | +6.9 | +25.1 | |
Steps (reduced) |
111 (0) |
176 (65) |
222 (0) |
258 (36) |
287 (65) |
312 (90) |
333 (0) |
352 (19) |
369 (36) |
384 (51) |
398 (65) |
411 (78) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Low priority
104edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
125edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
145edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
152edo
- 241edt
- 13-limit WE (7.894c)
- Best nearby ZPI(s)
159edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
166edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
182edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
198edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
212edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
243edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
247edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)