User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 7: | Line 7: | ||
What follows is a comparison of stretched- and compressed-octave 33edo tunings. | What follows is a comparison of stretched- and compressed-octave 33edo tunings. | ||
; [[ | ; [[ed5|76ed5]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 33edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 76ed5 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|76|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 76ed5}} | ||
{{Harmonics in equal| | {{Harmonics in equal|76|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 76ed5 (continued)}} | ||
; [[ | ; [[ed7|92ed7]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 33edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 92ed7 does this. So does the tuning [[zpi|137zpi]] whose octave differs by only 0.3{{c}}. | |||
{{Harmonics in equal| | {{Harmonics in equal|92|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92ed7}} | ||
{{Harmonics in equal| | {{Harmonics in equal|92|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92ed7 (continued)}} | ||
; [[ | ; [[equal tuning|114ed11]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 33edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 114ed11 does this. | |||
{{Harmonics in | {{Harmonics in equal|114|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 114ed11}} | ||
{{Harmonics in | {{Harmonics in equal|114|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 114ed11 (continued)}} | ||
; [[zpi|138zpi]] | |||
* Step size: 36.394{{c}}, octave size: NNN{{c}} | |||
Compressing the octave of 33edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 138zpi does this. So does the tuning [[equal tuning|122ed13]] whose octave differs by only 0.1{{c}}. | |||
{{Harmonics in cet|36.394|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 138zpi}} | |||
{{Harmonics in cet|36.394|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 138zpi (continued)}} | |||
; 33edo | ; 33edo | ||
Line 37: | Line 43: | ||
{{Harmonics in cet|36.357|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 33et, 13-limit WE tuning (continued)}} | {{Harmonics in cet|36.357|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 33et, 13-limit WE tuning (continued)}} | ||
; [[ | ; [[ed7|93ed7]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 33edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. If one wishes to use both 33edo's sharp and flat fifths simultaneously (see [[dual-fifth tuning]]), then this amount of stretch is ideal, because it evenly shares error between the two fifths. The tuning 93ed7 does this. So does the tuning [[equal tuning|52ed13]] whose octave differs by only 0.1{{c}}. | |||
{{Harmonics in equal| | {{Harmonics in equal|93|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 93ed7}} | ||
{{Harmonics in equal| | {{Harmonics in equal|93|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 93ed7 (continued)}} | ||
; [[ | ; [[ed5|77ed5]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 33edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 77ed5 does this. So does the tuning [[zpi|139zpi]] whose octave differs by only 0.2{{c}}. | |||
{{Harmonics in equal| | {{Harmonics in equal|77|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 77ed5}} | ||
{{Harmonics in equal| | {{Harmonics in equal|77|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 77ed5 (continued)}} | ||
; [[ | ; [[115ed11]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 33edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 115ed11 does this. So do the tunings [[equal tuning|123ed13]] and [[AS|1ed47/46]] whose octaves are within 0.3{{c}} of 115ed11. | |||
{{Harmonics in equal| | {{Harmonics in equal|115|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 115ed11}} | ||
{{Harmonics in equal| | {{Harmonics in equal|115|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 115ed11 (continued)}} | ||
= Title2 = | = Title2 = |
Revision as of 00:31, 30 August 2025
Quick link
User:BudjarnLambeth/Draft related tunings section
Title1
Octave stretch or compression
What follows is a comparison of stretched- and compressed-octave 33edo tunings.
- Step size: NNN ¢, octave size: NNN ¢
Compressing the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 76ed5 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.8 | +4.5 | -17.0 | +0.0 | +14.3 | +4.1 | -7.1 | +8.9 | +9.8 | -8.5 | -12.5 |
Relative (%) | +26.9 | +12.2 | -46.3 | +0.0 | +39.1 | +11.1 | -19.4 | +24.4 | +26.9 | -23.2 | -34.1 | |
Steps (reduced) |
33 (33) |
52 (52) |
65 (65) |
76 (0) |
85 (9) |
92 (16) |
98 (22) |
104 (28) |
109 (33) |
113 (37) |
117 (41) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.4 | +13.9 | +4.5 | +2.7 | +7.8 | -17.9 | -1.5 | -17.0 | +8.6 | +1.3 | -2.3 | -2.7 |
Relative (%) | -12.1 | +38.0 | +12.2 | +7.4 | +21.2 | -48.8 | -4.1 | -46.3 | +23.3 | +3.6 | -6.3 | -7.2 | |
Steps (reduced) |
121 (45) |
125 (49) |
128 (52) |
131 (55) |
134 (58) |
136 (60) |
139 (63) |
141 (65) |
144 (68) |
146 (70) |
148 (72) |
150 (74) |
- Step size: NNN ¢, octave size: NNN ¢
Compressing the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 92ed7 does this. So does the tuning 137zpi whose octave differs by only 0.3 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.4 | +2.2 | +16.8 | -3.4 | +10.5 | +0.0 | -11.5 | +4.3 | +5.0 | -13.5 | -17.7 |
Relative (%) | +22.9 | +5.9 | +45.8 | -9.2 | +28.8 | +0.0 | -31.3 | +11.8 | +13.7 | -36.9 | -48.3 | |
Steps (reduced) |
33 (33) |
52 (52) |
66 (66) |
76 (76) |
85 (85) |
92 (0) |
98 (6) |
104 (12) |
109 (17) |
113 (21) |
117 (25) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.8 | +8.4 | -1.2 | -3.1 | +1.8 | +12.7 | -7.7 | +13.4 | +2.2 | -5.1 | -8.9 | -9.3 |
Relative (%) | -26.7 | +22.9 | -3.3 | -8.4 | +5.0 | +34.7 | -20.9 | +36.6 | +5.9 | -14.0 | -24.2 | -25.4 | |
Steps (reduced) |
121 (29) |
125 (33) |
128 (36) |
131 (39) |
134 (42) |
137 (45) |
139 (47) |
142 (50) |
144 (52) |
146 (54) |
148 (56) |
150 (58) |
- Step size: NNN ¢, octave size: NNN ¢
Compressing the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 114ed11 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.7 | -8.4 | +3.4 | +17.6 | -6.7 | +17.8 | +5.1 | -16.7 | -17.1 | +0.0 | -5.0 |
Relative (%) | +4.7 | -23.0 | +9.3 | +48.5 | -18.3 | +48.8 | +14.0 | -46.0 | -46.9 | +0.0 | -13.7 | |
Steps (reduced) |
33 (33) |
52 (52) |
66 (66) |
77 (77) |
85 (85) |
93 (93) |
99 (99) |
104 (104) |
109 (109) |
114 (0) |
118 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.1 | -16.9 | +9.3 | +6.8 | +11.1 | -15.0 | +0.6 | -15.4 | +9.4 | +1.7 | -2.4 | -3.3 |
Relative (%) | +5.8 | -46.5 | +25.5 | +18.6 | +30.4 | -41.3 | +1.6 | -42.2 | +25.8 | +4.7 | -6.7 | -9.0 | |
Steps (reduced) |
122 (8) |
125 (11) |
129 (15) |
132 (18) |
135 (21) |
137 (23) |
140 (26) |
142 (28) |
145 (31) |
147 (33) |
149 (35) |
151 (37) |
- Step size: 36.394 ¢, octave size: NNN ¢
Compressing the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 138zpi does this. So does the tuning 122ed13 whose octave differs by only 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.0 | -9.5 | +2.0 | +16.0 | -8.5 | +15.8 | +3.0 | +17.5 | +17.0 | -2.4 | -7.5 |
Relative (%) | +2.8 | -26.0 | +5.5 | +44.0 | -23.3 | +43.5 | +8.3 | +48.0 | +46.8 | -6.6 | -20.5 | |
Step | 33 | 52 | 66 | 77 | 85 | 93 | 99 | 105 | 110 | 114 | 118 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.5 | +16.8 | +6.6 | +4.0 | +8.2 | -17.9 | -2.4 | +18.0 | +6.3 | -1.4 | -5.6 | -6.5 |
Relative (%) | -1.3 | +46.2 | +18.0 | +11.0 | +22.6 | -49.3 | -6.5 | +49.5 | +17.4 | -3.8 | -15.3 | -17.8 | |
Step | 122 | 126 | 129 | 132 | 135 | 137 | 140 | 143 | 145 | 147 | 149 | 151 |
- 33edo
- Step size: 36.363 ¢, octave size: NNN ¢
Pure-octaves 33edo approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -11.0 | +0.0 | +13.7 | -11.0 | +13.0 | +0.0 | +14.3 | +13.7 | -5.9 | -11.0 |
Relative (%) | +0.0 | -30.4 | +0.0 | +37.6 | -30.4 | +35.7 | +0.0 | +39.2 | +37.6 | -16.1 | -30.4 | |
Steps (reduced) |
33 (0) |
52 (19) |
66 (0) |
77 (11) |
85 (19) |
93 (27) |
99 (0) |
105 (6) |
110 (11) |
114 (15) |
118 (19) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.2 | +13.0 | +2.6 | +0.0 | +4.1 | +14.3 | -6.6 | +13.7 | +1.9 | -5.9 | -10.1 | -11.0 |
Relative (%) | -11.5 | +35.7 | +7.3 | +0.0 | +11.4 | +39.2 | -18.2 | +37.6 | +5.4 | -16.1 | -27.8 | -30.4 | |
Steps (reduced) |
122 (23) |
126 (27) |
129 (30) |
132 (0) |
135 (3) |
138 (6) |
140 (8) |
143 (11) |
145 (13) |
147 (15) |
149 (17) |
151 (19) |
- Step size: 36.357 ¢, octave size: NNN ¢
Compressing the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.2 | -11.4 | -0.4 | +13.2 | -11.6 | +12.4 | -0.7 | +13.6 | +13.0 | -6.6 | -11.8 |
Relative (%) | -0.6 | -31.3 | -1.2 | +36.2 | -31.9 | +34.0 | -1.8 | +37.3 | +35.6 | -18.2 | -32.5 | |
Step | 33 | 52 | 66 | 77 | 85 | 93 | 99 | 105 | 110 | 114 | 118 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.0 | +12.2 | +1.8 | -0.9 | +3.2 | +13.4 | -7.5 | +12.7 | +1.0 | -6.8 | -11.1 | -12.0 |
Relative (%) | -13.7 | +33.4 | +4.9 | -2.4 | +8.9 | +36.7 | -20.7 | +35.0 | +2.7 | -18.8 | -30.5 | -33.1 | |
Step | 122 | 126 | 129 | 132 | 135 | 138 | 140 | 143 | 145 | 147 | 149 | 151 |
- Step size: NNN ¢, octave size: NNN ¢
Stretching the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. If one wishes to use both 33edo's sharp and flat fifths simultaneously (see dual-fifth tuning), then this amount of stretch is ideal, because it evenly shares error between the two fifths. The tuning 93ed7 does this. So does the tuning 52ed13 whose octave differs by only 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.6 | +17.9 | -9.2 | +2.9 | +13.3 | +0.0 | -13.8 | -0.4 | -1.7 | +14.4 | +8.7 |
Relative (%) | -12.7 | +49.5 | -25.5 | +8.1 | +36.7 | +0.0 | -38.2 | -1.1 | -4.6 | +39.8 | +24.0 | |
Steps (reduced) |
33 (33) |
53 (53) |
66 (66) |
77 (77) |
86 (86) |
93 (0) |
99 (6) |
105 (12) |
110 (17) |
115 (22) |
119 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.0 | -4.6 | -15.4 | +17.8 | -14.7 | -5.0 | +10.1 | -6.3 | +17.9 | +9.8 | +5.3 | +4.1 |
Relative (%) | +41.5 | -12.7 | -42.5 | +49.1 | -40.6 | -13.8 | +27.8 | -17.4 | +49.5 | +27.1 | +14.7 | +11.3 | |
Steps (reduced) |
123 (30) |
126 (33) |
129 (36) |
133 (40) |
135 (42) |
138 (45) |
141 (48) |
143 (50) |
146 (53) |
148 (55) |
150 (57) |
152 (59) |
- Step size: NNN ¢, octave size: NNN ¢
Stretching the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 77ed5 does this. So does the tuning 139zpi whose octave differs by only 0.2 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.9 | +15.9 | -11.7 | +0.0 | +10.0 | -3.5 | -17.6 | -4.4 | -5.9 | +10.1 | +4.2 |
Relative (%) | -16.2 | +43.9 | -32.4 | +0.0 | +27.7 | -9.8 | -48.6 | -12.1 | -16.2 | +27.8 | +11.5 | |
Steps (reduced) |
33 (33) |
53 (53) |
66 (66) |
77 (0) |
86 (9) |
93 (16) |
99 (22) |
105 (28) |
110 (33) |
115 (38) |
119 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.3 | -9.4 | +15.9 | +12.7 | +16.3 | -10.3 | +4.7 | -11.7 | +12.4 | +4.2 | -0.4 | -1.7 |
Relative (%) | +28.6 | -26.0 | +43.9 | +35.2 | +45.1 | -28.3 | +13.0 | -32.4 | +34.2 | +11.6 | -1.1 | -4.7 | |
Steps (reduced) |
123 (46) |
126 (49) |
130 (53) |
133 (56) |
136 (59) |
138 (61) |
141 (64) |
143 (66) |
146 (69) |
148 (71) |
150 (73) |
152 (75) |
- Step size: NNN ¢, octave size: NNN ¢
Stretching the octave of 33edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 115ed11 does this. So do the tunings 123ed13 and 1ed47/46 whose octaves are within 0.3 ¢ of 115ed11.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.8 | +11.3 | -17.5 | -6.7 | +2.5 | -11.7 | +9.8 | -13.6 | -15.5 | +0.0 | -6.2 |
Relative (%) | -24.2 | +31.2 | -48.5 | -18.7 | +7.0 | -32.3 | +27.3 | -37.6 | -42.9 | +0.0 | -17.3 | |
Steps (reduced) |
33 (33) |
53 (53) |
66 (66) |
77 (77) |
86 (86) |
93 (93) |
100 (100) |
105 (105) |
110 (110) |
115 (0) |
119 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.4 | +15.7 | +4.5 | +1.1 | +4.4 | +13.8 | -7.6 | +11.9 | -0.4 | -8.8 | -13.5 | -15.0 |
Relative (%) | -1.2 | +43.4 | +12.5 | +3.0 | +12.3 | +38.1 | -21.2 | +32.8 | -1.1 | -24.2 | -37.4 | -41.5 | |
Steps (reduced) |
123 (8) |
127 (12) |
130 (15) |
133 (18) |
136 (21) |
139 (24) |
141 (26) |
144 (29) |
146 (31) |
148 (33) |
150 (35) |
152 (37) |
Title2
Lab
Place holder
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | -102 | -86 | -69 | +49 | +59 | -105 | +2 | -28 | -130 | +55 |
Relative (%) | +0.0 | -34.0 | -28.8 | -22.9 | +16.2 | +19.8 | -35.0 | +0.8 | -9.4 | -43.2 | +18.3 | |
Step | 4 | 6 | 9 | 11 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.6 | +3.2 | +10.0 | +11.3 | -3.0 | +15.1 | +11.6 | +3.4 | +10.6 | +8.8 | -14.5 |
Relative (%) | -5.2 | +10.4 | +32.4 | +36.7 | -9.8 | +49.0 | +37.6 | +11.0 | +34.6 | +28.6 | -47.1 | |
Steps (reduced) |
39 (39) |
62 (62) |
91 (91) |
110 (110) |
135 (135) |
145 (5) |
160 (20) |
166 (26) |
177 (37) |
190 (50) |
193 (53) |
Possible tunings to be used on each page
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
- High-priority
39edo
- 171zpi (30.973c) (optimised for dual-fifths use)
- 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2 ¢)
- 101ed6 (octave of 172zpi differs by only 0.4 ¢)
- 173zpi (30.672c) (octave of 62edt differs by only 0.2 ¢)
- 110ed7 (octave of 145ed13 differs by only 0.1 ¢)
- 91ed5
45edo
- 209zpi (26.550)
- 13-limit WE (26.695c)
- 161ed12
- 116ed6 (octave identical to 126ed7 within 0.1 ¢)
- 7-limit WE (26.745c)
- 207zpi (26.762)
- 71edt (octave identical to 155ed11 within 0.3 ¢)
54edo
- 139ed6 (octave is identical to 262zpi within 0.2 ¢)
- 151ed7
- 193ed12
- 263zpi (22.243c)
- 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1 ¢)
- 264zpi (22.175c) (octave is identical to 194ed12 within 0.01 ¢)
- 152ed7
- 140ed6
- 126ed5 (octave is identical to 86edt within 0.1 ¢)
64edo
- 179ed7 (octave is identical to 326zpi within 0.3 ¢)
- 165ed6
- 229ed12 (octave is identical to 221ed11 within 0.1 ¢)
- 327zpi (18.767c)
- 11-limit WE (18.755c)
pure octaves 64edo (octave is identical to 13-limit WE within 0.13 ¢
- 328zpi (18.721c)
- 180ed7
- 230ed12
- 149ed5
33edo (reduce # of edonoi)
- 76ed5
- 92ed7 (137zpi's octave differs by only 0.3 ¢)
- 52ed13
- 114ed11
- 138zpi (36.394c) (122ed13's octave differs by only 0.1 ¢)
- 13-limit WE (36.357c)
- 93ed7 (optimised for dual-fifths)
- 77ed5 (139zpi's octave differs by only 0.2 ¢)
- 123ed13 / 1ed47/46 (identical within <0.1 ¢)
- 115ed11
42edo (reduce # of edonoi)
- 108ed6 (octave is identical to 97ed5 within 0.1 ¢)
- 189zpi (28.689c)
- 150ed12
- 145ed11
190zpi's octave is within 0.05 ¢ of pure-octaves 42edo
- 118ed7
- 13-limit WE (28.534c)
- 151ed12 (octave is identical to 7-limit WE within 0.3 ¢)
- 109ed6
- 191zpi (28.444c)
- 67edt
59edo (reduce # of edonoi or zpi)
- 152ed6
- 294zpi (20.399c)
- 211ed12
- 295zpi (20.342c)
pure octaves 59edo octave is identical to 137ed5 within 0.05 ¢
- 13-limit WE (20.320c)
- 7-limit WE (20.301c)
- 166ed7
- 212ed12
- 296zpi (20.282c)
- 153ed6
- Medium priority
118edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.26 | +0.00 | +0.13 | -0.26 | -2.72 | +0.00 | -0.52 | +0.13 | -2.17 | -0.26 | +3.54 |
Relative (%) | +0.0 | -2.6 | +0.0 | +1.2 | -2.6 | -26.8 | +0.0 | -5.1 | +1.2 | -21.3 | -2.6 | +34.8 | |
Steps (reduced) |
118 (0) |
187 (69) |
236 (0) |
274 (38) |
305 (69) |
331 (95) |
354 (0) |
374 (20) |
392 (38) |
408 (54) |
423 (69) |
437 (83) |
- 187edt
- 69edf
- 13-limit WE (10.171c)
- Best nearby ZPI(s)
13edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +36.5 | +0.0 | -17.1 | +36.5 | -45.7 | +0.0 | -19.3 | -17.1 | +2.5 | +36.5 | -9.8 |
Relative (%) | +0.0 | +39.5 | +0.0 | -18.5 | +39.5 | -49.6 | +0.0 | -20.9 | -18.5 | +2.7 | +39.5 | -10.6 | |
Steps (reduced) |
13 (0) |
21 (8) |
26 (0) |
30 (4) |
34 (8) |
36 (10) |
39 (0) |
41 (2) |
43 (4) |
45 (6) |
47 (8) |
48 (9) |
- Main: "13edo and optimal octave stretching"
- 2.5.11.13 WE (92.483c)
- 2.5.7.13 WE (92.804c)
- 2.3 WE (91.405c) (good for opposite 7 mapping)
- 38zpi (92.531c)
103edo (narrow down edonoi, choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -2.93 | +0.00 | -1.85 | -2.93 | -1.84 | +0.00 | +5.80 | -1.85 | -3.75 | -2.93 | -1.69 |
Relative (%) | +0.0 | -25.1 | +0.0 | -15.9 | -25.1 | -15.8 | +0.0 | +49.8 | -15.9 | -32.1 | -25.1 | -14.5 | |
Steps (reduced) |
103 (0) |
163 (60) |
206 (0) |
239 (33) |
266 (60) |
289 (83) |
309 (0) |
327 (18) |
342 (33) |
356 (47) |
369 (60) |
381 (72) |
- 163edt
- 239ed5
- 266ed6
- 289ed7
- 356ed11
- 369ed12
- 381ed13
- 421ed17
- 466ed23
- 13-limit WE (11.658c)
- Best nearby ZPI(s)
111edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.75 | +0.00 | +2.88 | +0.75 | +4.15 | +0.00 | +1.50 | +2.88 | +0.03 | +0.75 | +2.72 |
Relative (%) | +0.0 | +6.9 | +0.0 | +26.6 | +6.9 | +38.4 | +0.0 | +13.8 | +26.6 | +0.3 | +6.9 | +25.1 | |
Steps (reduced) |
111 (0) |
176 (65) |
222 (0) |
258 (36) |
287 (65) |
312 (90) |
333 (0) |
352 (19) |
369 (36) |
384 (51) |
398 (65) |
411 (78) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Low priority
104edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
125edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
145edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
152edo
- 241edt
- 13-limit WE (7.894c)
- Best nearby ZPI(s)
159edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
166edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
182edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
198edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
212edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
243edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
247edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Optional
25edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -2.3 | +18.0 | -8.8 | +0.0 | -11.9 | -2.3 | -23.3 | +18.0 | +23.5 |
Relative (%) | +0.0 | +37.6 | +0.0 | -4.8 | +37.6 | -18.4 | +0.0 | -24.8 | -4.8 | -48.6 | +37.6 | +48.9 | |
Steps (reduced) |
25 (0) |
40 (15) |
50 (0) |
58 (8) |
65 (15) |
70 (20) |
75 (0) |
79 (4) |
83 (8) |
86 (11) |
90 (15) |
93 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
26edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -9.6 | +0.0 | -17.1 | -9.6 | +0.4 | +0.0 | -19.3 | -17.1 | +2.5 | -9.6 | -9.8 |
Relative (%) | +0.0 | -20.9 | +0.0 | -37.0 | -20.9 | +0.9 | +0.0 | -41.8 | -37.0 | +5.5 | -20.9 | -21.1 | |
Steps (reduced) |
26 (0) |
41 (15) |
52 (0) |
60 (8) |
67 (15) |
73 (21) |
78 (0) |
82 (4) |
86 (8) |
90 (12) |
93 (15) |
96 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
29edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +1.5 | +0.0 | -13.9 | +1.5 | -17.1 | +0.0 | +3.0 | -13.9 | -13.4 | +1.5 | -12.9 |
Relative (%) | +0.0 | +3.6 | +0.0 | -33.6 | +3.6 | -41.3 | +0.0 | +7.2 | -33.6 | -32.4 | +3.6 | -31.3 | |
Steps (reduced) |
29 (0) |
46 (17) |
58 (0) |
67 (9) |
75 (17) |
81 (23) |
87 (0) |
92 (5) |
96 (9) |
100 (13) |
104 (17) |
107 (20) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
30edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | -3.9 | +13.7 | +8.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +45.1 | +0.0 | +34.2 | +45.1 | -22.1 | +0.0 | -9.8 | +34.2 | +21.7 | +45.1 | -1.3 | |
Steps (reduced) |
30 (0) |
48 (18) |
60 (0) |
70 (10) |
78 (18) |
84 (24) |
90 (0) |
95 (5) |
100 (10) |
104 (14) |
108 (18) |
111 (21) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
34edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +3.9 | +0.0 | +1.9 | +3.9 | -15.9 | +0.0 | +7.9 | +1.9 | +13.4 | +3.9 | +6.5 |
Relative (%) | +0.0 | +11.1 | +0.0 | +5.4 | +11.1 | -45.0 | +0.0 | +22.3 | +5.4 | +37.9 | +11.1 | +18.5 | |
Steps (reduced) |
34 (0) |
54 (20) |
68 (0) |
79 (11) |
88 (20) |
95 (27) |
102 (0) |
108 (6) |
113 (11) |
118 (16) |
122 (20) |
126 (24) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
35edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -16.2 | +0.0 | -9.2 | -16.2 | -8.8 | +0.0 | +1.8 | -9.2 | -2.7 | -16.2 | +16.6 |
Relative (%) | +0.0 | -47.4 | +0.0 | -26.7 | -47.4 | -25.7 | +0.0 | +5.3 | -26.7 | -8.0 | -47.4 | +48.5 | |
Steps (reduced) |
35 (0) |
55 (20) |
70 (0) |
81 (11) |
90 (20) |
98 (28) |
105 (0) |
111 (6) |
116 (11) |
121 (16) |
125 (20) |
130 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
36edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -2.2 | +0.0 | -3.9 | +13.7 | +15.3 | -2.0 | -7.2 |
Relative (%) | +0.0 | -5.9 | +0.0 | +41.1 | -5.9 | -6.5 | +0.0 | -11.7 | +41.1 | +46.0 | -5.9 | -21.6 | |
Steps (reduced) |
36 (0) |
57 (21) |
72 (0) |
84 (12) |
93 (21) |
101 (29) |
108 (0) |
114 (6) |
120 (12) |
125 (17) |
129 (21) |
133 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
37edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +11.6 | +0.0 | +2.9 | +11.6 | +4.1 | +0.0 | -9.3 | +2.9 | +0.0 | +11.6 | +2.7 |
Relative (%) | +0.0 | +35.6 | +0.0 | +8.9 | +35.6 | +12.8 | +0.0 | -28.7 | +8.9 | +0.1 | +35.6 | +8.4 | |
Steps (reduced) |
37 (0) |
59 (22) |
74 (0) |
86 (12) |
96 (22) |
104 (30) |
111 (0) |
117 (6) |
123 (12) |
128 (17) |
133 (22) |
137 (26) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
9edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -35.3 | +0.0 | +13.7 | -35.3 | -35.5 | +0.0 | +62.8 | +13.7 | -18.0 | -35.3 | -40.5 |
Relative (%) | +0.0 | -26.5 | +0.0 | +10.3 | -26.5 | -26.6 | +0.0 | +47.1 | +10.3 | -13.5 | -26.5 | -30.4 | |
Steps (reduced) |
9 (0) |
14 (5) |
18 (0) |
21 (3) |
23 (5) |
25 (7) |
27 (0) |
29 (2) |
30 (3) |
31 (4) |
32 (5) |
33 (6) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
10edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -26.3 | +18.0 | -8.8 | +0.0 | +36.1 | -26.3 | +48.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +15.0 | +0.0 | -21.9 | +15.0 | -7.4 | +0.0 | +30.1 | -21.9 | +40.6 | +15.0 | -0.4 | |
Steps (reduced) |
10 (0) |
16 (6) |
20 (0) |
23 (3) |
26 (6) |
28 (8) |
30 (0) |
32 (2) |
33 (3) |
35 (5) |
36 (6) |
37 (7) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
11edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -47.4 | +0.0 | +50.0 | -47.4 | +13.0 | +0.0 | +14.3 | +50.0 | -5.9 | -47.4 | +32.2 |
Relative (%) | +0.0 | -43.5 | +0.0 | +45.9 | -43.5 | +11.9 | +0.0 | +13.1 | +45.9 | -5.4 | -43.5 | +29.5 | |
Steps (reduced) |
11 (0) |
17 (6) |
22 (0) |
26 (4) |
28 (6) |
31 (9) |
33 (0) |
35 (2) |
37 (4) |
38 (5) |
39 (6) |
41 (8) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
15edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | +36.1 | +13.7 | +8.7 | +18.0 | +39.5 |
Relative (%) | +0.0 | +22.6 | +0.0 | +17.1 | +22.6 | -11.0 | +0.0 | +45.1 | +17.1 | +10.9 | +22.6 | +49.3 | |
Steps (reduced) |
15 (0) |
24 (9) |
30 (0) |
35 (5) |
39 (9) |
42 (12) |
45 (0) |
48 (3) |
50 (5) |
52 (7) |
54 (9) |
56 (11) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
18edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +31.4 | +0.0 | +13.7 | +31.4 | +31.2 | +0.0 | -3.9 | +13.7 | -18.0 | +31.4 | +26.1 |
Relative (%) | +0.0 | +47.1 | +0.0 | +20.5 | +47.1 | +46.8 | +0.0 | -5.9 | +20.5 | -27.0 | +47.1 | +39.2 | |
Steps (reduced) |
18 (0) |
29 (11) |
36 (0) |
42 (6) |
47 (11) |
51 (15) |
54 (0) |
57 (3) |
60 (6) |
62 (8) |
65 (11) |
67 (13) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
48edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | -11.3 | -2.0 | +6.2 | +0.0 | -3.9 | -11.3 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -7.8 | +0.0 | -45.3 | -7.8 | +24.7 | +0.0 | -15.6 | -45.3 | -5.3 | -7.8 | +37.9 | |
Steps (reduced) |
48 (0) |
76 (28) |
96 (0) |
111 (15) |
124 (28) |
135 (39) |
144 (0) |
152 (8) |
159 (15) |
166 (22) |
172 (28) |
178 (34) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
5edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | +18 | +0 | +94 | +18 | -9 | +0 | +36 | +94 | -71 | +18 | +119 |
Relative (%) | +0.0 | +7.5 | +0.0 | +39.0 | +7.5 | -3.7 | +0.0 | +15.0 | +39.0 | -29.7 | +7.5 | +49.8 | |
Steps (reduced) |
5 (0) |
8 (3) |
10 (0) |
12 (2) |
13 (3) |
14 (4) |
15 (0) |
16 (1) |
17 (2) |
17 (2) |
18 (3) |
19 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
6edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +98.0 | +0.0 | +13.7 | +98.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | +98.0 | -40.5 |
Relative (%) | +0.0 | +49.0 | +0.0 | +6.8 | +49.0 | +15.6 | +0.0 | -2.0 | +6.8 | +24.3 | +49.0 | -20.3 | |
Steps (reduced) |
6 (0) |
10 (4) |
12 (0) |
14 (2) |
16 (4) |
17 (5) |
18 (0) |
19 (1) |
20 (2) |
21 (3) |
22 (4) |
22 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
20edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -26.3 | +18.0 | -8.8 | +0.0 | -23.9 | -26.3 | -11.3 | +18.0 | -0.5 |
Relative (%) | +0.0 | +30.1 | +0.0 | -43.9 | +30.1 | -14.7 | +0.0 | -39.9 | -43.9 | -18.9 | +30.1 | -0.9 | |
Steps (reduced) |
20 (0) |
32 (12) |
40 (0) |
46 (6) |
52 (12) |
56 (16) |
60 (0) |
63 (3) |
66 (6) |
69 (9) |
72 (12) |
74 (14) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
24edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -18.8 | +0.0 | -3.9 | +13.7 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -3.9 | +0.0 | +27.4 | -3.9 | -37.7 | +0.0 | -7.8 | +27.4 | -2.6 | -3.9 | +18.9 | |
Steps (reduced) |
24 (0) |
38 (14) |
48 (0) |
56 (8) |
62 (14) |
67 (19) |
72 (0) |
76 (4) |
80 (8) |
83 (11) |
86 (14) |
89 (17) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
28edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -16.2 | +0.0 | -0.6 | -16.2 | +16.9 | +0.0 | +10.4 | -0.6 | +5.8 | -16.2 | +16.6 |
Relative (%) | +0.0 | -37.9 | +0.0 | -1.4 | -37.9 | +39.4 | +0.0 | +24.2 | -1.4 | +13.6 | -37.9 | +38.8 | |
Steps (reduced) |
28 (0) |
44 (16) |
56 (0) |
65 (9) |
72 (16) |
79 (23) |
84 (0) |
89 (5) |
93 (9) |
97 (13) |
100 (16) |
104 (20) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)