User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 1: | Line 1: | ||
= Title1 = | = Title1 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
Having a flat tendency, 16et is best tuned with [[stretched octave]]s, which improve the accuracy of wide-voiced JI chords and [[rooted]] harmonics especially on inharmonic timbres such as bells and [[gamelan]], with [[ | Having a flat tendency, 16et is best tuned with [[stretched octave]]s, which improve the accuracy of wide-voiced JI chords and [[rooted]] harmonics especially on inharmonic timbres such as bells and [[gamelan]], with [[37ed5]] and [[57ed12]] being good options. | ||
What follows is a comparison of stretched- and compressed-octave 16edo tunings. | What follows is a comparison of stretched- and compressed-octave 16edo tunings. | ||
Line 7: | Line 7: | ||
; 16edo | ; 16edo | ||
* Step size: 75.000{{c}}, octave size: 1200.0{{c}} | * Step size: 75.000{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves 16edo approximates all harmonics up to 16 within | Pure-octaves 16edo approximates all harmonics up to 16 within 36.7{{c}}. | ||
{{Harmonics in equal|16|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16edo}} | {{Harmonics in equal|16|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16edo}} | ||
{{Harmonics in equal|16|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16edo (continued)}} | {{Harmonics in equal|16|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16edo (continued)}} | ||
Line 13: | Line 13: | ||
; [[WE|16et, 2.5.7.13 WE tuning]] | ; [[WE|16et, 2.5.7.13 WE tuning]] | ||
* Step size: 75.105{{c}}, octave size: 1201.7{{c}} | * Step size: 75.105{{c}}, octave size: 1201.7{{c}} | ||
Stretching the octave of 16edo by around 2{{c}} results in improved primes | Stretching the octave of 16edo by around 2{{c}} results in improved primes 3, 5, 11 and 13, but worse primes 2 and 7. This approximates all harmonics up to 16 within 31.8{{c}}. Its 2.5.7.13 WE tuning and 2.5.7.13 [[TE]] tuning both do this. | ||
{{Harmonics in cet|75.105|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning}} | {{Harmonics in cet|75.105|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning}} | ||
{{Harmonics in cet|75.105|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning (continued)}} | {{Harmonics in cet|75.105|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning (continued)}} | ||
; [[zpi|15zpi]] | ; [[zpi|15zpi]] / [[equal tuning|59ed13]] | ||
* Step size: 75.262{{c}}, octave size: 1204.2{{c}} | * Step size: 75.262{{c}}, octave size: 1204.2{{c}} | ||
Stretching the octave of 16edo by around 4{{c}} results in improved primes | Stretching the octave of 16edo by around 4{{c}} results in very improved primes 3, 5, 11 and 13, but much worse primes 2 and 7. This approximates all harmonics up to 16 within 34.5{{c}}. The tunings 15zpi and 59ed13 do this. | ||
{{Harmonics in cet|75.262|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 15zpi}} | {{Harmonics in cet|75.262|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 15zpi}} | ||
{{Harmonics in cet|75.262|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 15zpi (continued)}} | {{Harmonics in cet|75.262|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 15zpi (continued)}} | ||
; [[WE|16et, 13-limit WE tuning]] | ; [[WE|16et, 13-limit WE tuning]] / [[37ed5]] | ||
* Step size: 75.315{{c}}, octave size: 1205.0{{c}} | * Step size (WE 16et): 75.315{{c}}, octave size (WE 16et): 1205.0{{c}} | ||
Stretching the octave of 16edo by around 5{{c}} results in improved primes | Stretching the octave of 16edo by around 5{{c}} results in very improved primes 3, 5, 11 and 13, but much worse primes 2 and 7. This approximates all harmonics up to 16 within 37.2{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this, so does the tuning 37ed5. | ||
{{Harmonics in cet|75.315|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning}} | {{Harmonics in cet|75.315|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning}} | ||
{{Harmonics in cet|75.315|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning (continued)}} | {{Harmonics in cet|75.315|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning (continued)}} | ||
{{Harmonics in equal|37|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 37ed5}} | |||
{{Harmonics in equal|37|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 37ed5 (continued)}} | |||
; [[57ed12]] | ; [[57ed12]] / [[equal tuning|55ed11]] | ||
* Step size: | * Step size (57ed12): 75.473{{c}}, octave size (57ed12): 1207.6{{c}} | ||
Stretching the octave of 16edo by around 7.5{{c}} results in improved primes | Stretching the octave of 16edo by around 7.5{{c}} results in especially improved primes 3, 5 and 11, but far worse primes 2 and 7. This approximates all harmonics up to 16 within NNN{{c}}. The tunings 57ed12 and 55ed11 do this. | ||
{{Harmonics in equal|57|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 57ed12}} | {{Harmonics in equal|57|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 57ed12}} | ||
{{Harmonics in equal|57|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 57ed12 (continued)}} | {{Harmonics in equal|57|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 57ed12 (continued)}} | ||
{{Harmonics in equal|55|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 55ed11}} | |||
{{Harmonics in equal|55|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 55ed11 (continued)}} | |||
{{Harmonics in equal| | |||
{{Harmonics in equal| | |||
= Title2 = | = Title2 = |
Revision as of 01:01, 28 August 2025
Title1
Octave stretch or compression
Having a flat tendency, 16et is best tuned with stretched octaves, which improve the accuracy of wide-voiced JI chords and rooted harmonics especially on inharmonic timbres such as bells and gamelan, with 37ed5 and 57ed12 being good options.
What follows is a comparison of stretched- and compressed-octave 16edo tunings.
- 16edo
- Step size: 75.000 ¢, octave size: 1200.0 ¢
Pure-octaves 16edo approximates all harmonics up to 16 within 36.7 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -27.0 | +0.0 | -11.3 | -27.0 | +6.2 | +0.0 | +21.1 | -11.3 | -26.3 | -27.0 |
Relative (%) | +0.0 | -35.9 | +0.0 | -15.1 | -35.9 | +8.2 | +0.0 | +28.1 | -15.1 | -35.1 | -35.9 | |
Steps (reduced) |
16 (0) |
25 (9) |
32 (0) |
37 (5) |
41 (9) |
45 (13) |
48 (0) |
51 (3) |
53 (5) |
55 (7) |
57 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.5 | +6.2 | +36.7 | +0.0 | -30.0 | +21.1 | +2.5 | -11.3 | -20.8 | -26.3 | -28.3 | -27.0 |
Relative (%) | -20.7 | +8.2 | +49.0 | +0.0 | -39.9 | +28.1 | +3.3 | -15.1 | -27.7 | -35.1 | -37.7 | -35.9 | |
Steps (reduced) |
59 (11) |
61 (13) |
63 (15) |
64 (0) |
65 (1) |
67 (3) |
68 (4) |
69 (5) |
70 (6) |
71 (7) |
72 (8) |
73 (9) |
- Step size: 75.105 ¢, octave size: 1201.7 ¢
Stretching the octave of 16edo by around 2 ¢ results in improved primes 3, 5, 11 and 13, but worse primes 2 and 7. This approximates all harmonics up to 16 within 31.8 ¢. Its 2.5.7.13 WE tuning and 2.5.7.13 TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.7 | -24.3 | +3.4 | -7.4 | -22.7 | +10.9 | +5.0 | +26.4 | -5.7 | -20.5 | -21.0 |
Relative (%) | +2.2 | -32.4 | +4.5 | -9.9 | -30.2 | +14.5 | +6.7 | +35.2 | -7.7 | -27.4 | -27.9 | |
Step | 16 | 25 | 32 | 37 | 41 | 45 | 48 | 51 | 53 | 55 | 57 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.3 | +12.6 | -31.8 | +6.7 | -23.1 | +28.1 | +9.6 | -4.1 | -13.4 | -18.9 | -20.7 | -19.3 |
Relative (%) | -12.4 | +16.7 | -42.3 | +8.9 | -30.8 | +37.4 | +12.8 | -5.4 | -17.9 | -25.1 | -27.6 | -25.7 | |
Step | 59 | 61 | 62 | 64 | 65 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |
- Step size: 75.262 ¢, octave size: 1204.2 ¢
Stretching the octave of 16edo by around 4 ¢ results in very improved primes 3, 5, 11 and 13, but much worse primes 2 and 7. This approximates all harmonics up to 16 within 34.5 ¢. The tunings 15zpi and 59ed13 do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.2 | -20.4 | +8.4 | -1.6 | -16.2 | +18.0 | +12.6 | +34.5 | +2.6 | -11.9 | -12.0 |
Relative (%) | +5.6 | -27.1 | +11.1 | -2.2 | -21.5 | +23.9 | +16.7 | +45.8 | +3.4 | -15.8 | -16.0 | |
Step | 16 | 25 | 32 | 37 | 41 | 45 | 48 | 51 | 53 | 55 | 57 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.1 | +22.2 | -22.0 | +16.8 | -12.9 | -36.6 | +20.3 | +6.8 | -2.4 | -7.7 | -9.4 | -7.8 |
Relative (%) | -0.1 | +29.4 | -29.3 | +22.3 | -17.2 | -48.7 | +27.0 | +9.0 | -3.2 | -10.3 | -12.5 | -10.4 | |
Step | 59 | 61 | 62 | 64 | 65 | 66 | 68 | 69 | 70 | 71 | 72 | 73 |
- Step size (WE 16et): 75.315 ¢, octave size (WE 16et): 1205.0 ¢
Stretching the octave of 16edo by around 5 ¢ results in very improved primes 3, 5, 11 and 13, but much worse primes 2 and 7. This approximates all harmonics up to 16 within 37.2 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this, so does the tuning 37ed5.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.0 | -19.1 | +10.1 | +0.3 | -14.0 | +20.3 | +15.1 | +37.2 | +5.4 | -9.0 | -9.0 |
Relative (%) | +6.7 | -25.3 | +13.4 | +0.5 | -18.6 | +27.0 | +20.1 | +49.3 | +7.1 | -11.9 | -11.9 | |
Step | 16 | 25 | 32 | 37 | 41 | 45 | 48 | 51 | 53 | 55 | 57 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.1 | +25.4 | -18.7 | +20.2 | -9.5 | -33.1 | +23.9 | +10.4 | +1.3 | -4.0 | -5.6 | -4.0 |
Relative (%) | +4.1 | +33.7 | -24.9 | +26.8 | -12.6 | -44.0 | +31.7 | +13.8 | +1.7 | -5.2 | -7.4 | -5.3 | |
Step | 59 | 61 | 62 | 64 | 65 | 66 | 68 | 69 | 70 | 71 | 72 | 73 |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.9 | -19.3 | +9.8 | +0.0 | -14.4 | +19.9 | +14.7 | +36.7 | +4.9 | -9.5 | -9.5 |
Relative (%) | +6.5 | -25.6 | +13.0 | +0.0 | -19.1 | +26.5 | +19.5 | +48.7 | +6.5 | -12.6 | -12.6 | |
Steps (reduced) |
16 (16) |
25 (25) |
32 (32) |
37 (0) |
41 (4) |
45 (8) |
48 (11) |
51 (14) |
53 (16) |
55 (18) |
57 (20) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.5 | +24.8 | -19.3 | +19.6 | -10.1 | -33.7 | +23.3 | +9.8 | +0.6 | -4.6 | -6.3 | -4.6 |
Relative (%) | +3.3 | +33.0 | -25.6 | +26.0 | -13.4 | -44.8 | +30.9 | +13.0 | +0.8 | -6.1 | -8.3 | -6.2 | |
Steps (reduced) |
59 (22) |
61 (24) |
62 (25) |
64 (27) |
65 (28) |
66 (29) |
68 (31) |
69 (32) |
70 (33) |
71 (34) |
72 (35) |
73 (36) |
- Step size (57ed12): 75.473 ¢, octave size (57ed12): 1207.6 ¢
Stretching the octave of 16edo by around 7.5 ¢ results in especially improved primes 3, 5 and 11, but far worse primes 2 and 7. This approximates all harmonics up to 16 within NNN ¢. The tunings 57ed12 and 55ed11 do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.6 | -15.1 | +15.1 | +6.2 | -7.6 | +27.5 | +22.7 | -30.3 | +13.7 | -0.3 | +0.0 |
Relative (%) | +10.0 | -20.1 | +20.1 | +8.2 | -10.0 | +36.4 | +30.1 | -40.1 | +18.2 | -0.4 | +0.0 | |
Steps (reduced) |
16 (16) |
25 (25) |
32 (32) |
37 (37) |
41 (41) |
45 (45) |
48 (48) |
50 (50) |
53 (53) |
55 (55) |
57 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.4 | +35.0 | -8.9 | +30.3 | +0.8 | -22.7 | +34.6 | +21.3 | +12.3 | +7.3 | +5.8 | +7.6 |
Relative (%) | +16.4 | +46.4 | -11.9 | +40.1 | +1.0 | -30.1 | +45.9 | +28.2 | +16.3 | +9.6 | +7.7 | +10.0 | |
Steps (reduced) |
59 (2) |
61 (4) |
62 (5) |
64 (7) |
65 (8) |
66 (9) |
68 (11) |
69 (12) |
70 (13) |
71 (14) |
72 (15) |
73 (16) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.7 | -15.0 | +15.3 | +6.4 | -7.3 | +27.7 | +23.0 | -30.0 | +14.0 | +0.0 | +0.3 |
Relative (%) | +10.1 | -19.9 | +20.3 | +8.5 | -9.7 | +36.7 | +30.4 | -39.7 | +18.6 | +0.0 | +0.4 | |
Steps (reduced) |
16 (16) |
25 (25) |
32 (32) |
37 (37) |
41 (41) |
45 (45) |
48 (48) |
50 (50) |
53 (53) |
55 (0) |
57 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.7 | +35.4 | -8.6 | +30.6 | +1.1 | -22.3 | +35.0 | +21.7 | +12.7 | +7.7 | +6.2 | +8.0 |
Relative (%) | +16.8 | +46.9 | -11.4 | +40.6 | +1.5 | -29.6 | +46.4 | +28.8 | +16.8 | +10.1 | +8.2 | +10.6 | |
Steps (reduced) |
59 (4) |
61 (6) |
62 (7) |
64 (9) |
65 (10) |
66 (11) |
68 (13) |
69 (14) |
70 (15) |
71 (16) |
72 (17) |
73 (18) |
Title2
Possible tunings to be used on each page
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
- High-priority
13edo
- Main: "13edo and optimal octave stretching"
- 2.5.11.13 WE (92.483c)
- 2.5.7.13 WE (92.804c)
- 2.3 WE (91.405c) (good for opposite 7 mapping)
- 38zpi (92.531c)
14edo
- 22edt
- 36ed6
- 11-limit WE (85.842c)
- 13-limit WE (85.759c)
- 42zpi (86.329c)
16edo
- 25edt
- 41ed6
- 57ed12
- 2.5.7.13 WE (75.105c)
- 13-limit WE (75.315c)
- 15zpi (75.262c)
99edo
- 157edt
- 256ed6
- 7-limit WE (12.117c)
- 13-limit WE (12.123c)
- 567zpi (12.138c)
- 568zpi (12.115c)
23edo (narrow down edonoi & ZPIs)
- Main: "23edo and octave stretching"
- 36edt
- 59ed6
- 60ed6
- 68ed8
- 11ed7/5
- 1ed33/32
- 2.3.5.13 WE (52.447c)
- 2.7.11 WE (51.962c)
- 13-limit WE (52.237c)
- 83zpi (53.105c)
- 84zpi (52.615c)
- 85zpi (52.114c)
- 86zpi (51.653c)
- 87zpi (51.201c)
60edo (narrow down edonoi & ZPIs)
- 95edt
- 139ed5
- 155ed6
- 208ed11
- 255ed19
- 272ed23 (great for catnip temperament)
- 13-limit WE (20.013c)
- 299zpi (20.128c)
- 300zpi (20.093c)
- 301zpi (20.027c)
- 302zpi (19.962c)
- 303zpi (19.913c)
- 304zpi (19.869c)
- Medium priority
32edo (narrow down ZPIs)
- 90ed7
- 51edt
- 75ed5
- 1ed46/45
- 11-limit WE (37.453c)
- 13-limit WE (37.481c)
- 131zpi (37.862c)
- 132zpi (37.662c)
- 133zpi (37.418c)
- 134zpi (37.176c)
33edo (narrow down edonoi)
- 76ed5
- 92ed7
- 52edt
- 1ed47/46
- 114ed11
- 122ed13
- 93ed7
- 23edPhi
- 77ed5
- 123ed13
- 115ed11
- 11-limit WE (36.349c)
- 13-limit WE (36.357c)
- 137zpi (36.628c)
- 138zpi (36.394c)
- 139zpi (36.179c)
39edo
- 62edt
- 101ed6
- 18ed11/8
- 2.3.5.11 WE (30.703c)
- 2.3.7.11.13 WE (30.787c)
- 13-limit WE (30.757c)
- 171zpi (30.973c)
- 172zpi (30.836c)
- 173zpi (30.672c)
42edo
- 42ed257/128 (replace w something similar but simpler)
- AS123/121 (1ed123/121)
- 11ed6/5
- 34ed7/4
- 7-limit WE (28.484c)
- 13-limit WE (28.534c)
- 189zpi (28.689c)
- 190zpi (28.572c)
- 191zpi (28.444c)
45edo
- 126ed7
- 13ed11/9
- 7-limit WE (26.745c)
- 13-limit WE (26.695c)
- 207zpi (26.762)
- 208zpi (26.646)
- 209zpi (26.550)
54edo
- 86edt
- 126ed5
- 152ed7
- 38ed5/3
- 40ed5/3
- 2.3.7.11.13 WE (22.180c)
- 13-limit WE (22.198c)
- 262zpi (22.313c)
- 263zpi (22.243c)
- 264zpi (22.175c)
59edo (narrow down ZPIs)
- 93edt
- 166ed7
- 203ed11
- 7-limit WE (20.301c)
- 11-limit WE (20.310c)
- 13-limit WE (20.320c)
- 293zpi (20.454c)
- 294zpi (20.399c)
- 295zpi (20.342c)
- 296zpi (20.282c)
- 297zpi (20.229c)
64edo (narrow down ZPIs)
- 149ed5
- 180ed7
- 222ed11
- 47ed5/3
- 11-limit WE (18.755c)
- 13-limit WE (18.752c)
- 325zpi (18.868c)
- 326zpi (18.816c)
- 327zpi (18.767c)
- 328zpi (18.721c)
- 329zpi (18.672c)
- 330zpi (18.630c)
103edo (narrow down edonoi, choose ZPIS)
- 163edt
- 239ed5
- 289ed7
- 356ed11
- 381ed13
- 421ed17
- 466ed23
- 13-limit WE (11.658c)
- Best nearby ZPI(s)
118edo (choose ZPIS)
- 187edt
- 69edf
- 13-limit WE (10.171c)
- Best nearby ZPI(s)
152edo (choose ZPIS)
- 241edt
- 13-limit WE (7.894c)
- Best nearby ZPI(s)
- Low priority
111edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
125edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
145edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
159edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
166edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
182edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
198edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
212edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
243edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
247edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Optional
25edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
26edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
29edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
30edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
34edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
35edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
36edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
37edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
5edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
6edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
9edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
10edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
11edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
15edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
18edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
48edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
20edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
24edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
28edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)