User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 12: | Line 12: | ||
; [[zpi|288zpi]] | ; [[zpi|288zpi]] | ||
* Step size: 20.736{{c}}, octave size: | * Step size: 20.736{{c}}, octave size: 1202.69{{c}} | ||
Stretching the octave of 58edo by around 2.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 288zpi does this. | |||
{{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 288zpi}} | ||
{{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 288zpi (continued)}} | ||
; 58edo | ; 58edo | ||
* Step size: 20.690{{c}}, octave size: | * Step size: 20.690{{c}}, octave size: 1200.00{{c}} | ||
Pure-octaves | Pure-octaves 58edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58edo}} | ||
{{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58edo (continued)}} | ||
; [[150ed6]] | ; [[150ed6]] | ||
* Step size: | * Step size: 20.680{{c}}, octave size: 1199.42{{c}} | ||
Compressing the octave of 58edo by around half a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 150ed6 does this. | |||
{{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed6}} | ||
{{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed6 (continued)}} | ||
; [[92edt]] | ; [[92edt]] | ||
* Step size: | * Step size: 20.673{{c}}, octave size: 1199.06{{c}} | ||
Compressing the octave of 58edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 92edt does this. | |||
{{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92edt}} | ||
{{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92edt (continued)}} | ||
; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]] | ; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]] | ||
* Step size: 20.666{{c}}, octave size: 1198.63{{c}} | * Step size: 20.666{{c}}, octave size: 1198.63{{c}} | ||
Compressing the octave of 58edo by just under 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06{{c}}. | |||
{{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 289zpi}} | ||
{{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 289zpi (continued)}} | ||
; [[WE|58et, 13-limit WE tuning]] | ; [[WE|58et, 13-limit WE tuning]] | ||
* Step size: 20.663{{c}}, octave size: 1198.45{{c}} | * Step size: 20.663{{c}}, octave size: 1198.45{{c}} | ||
Compressing the octave of 58edo by just over 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning}} | ||
{{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning (continued)}} |
Latest revision as of 23:42, 26 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly compressing the octave is acceptable, using tunings such as 92edt or 150ed6.
What follows is a comparison of stretched- and compressed-octave 58edo tunings.
- Step size: 20.736 ¢, octave size: 1202.69 ¢
Stretching the octave of 58edo by around 2.5 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 288zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.69 | +5.76 | +5.38 | -7.69 | +8.44 | -9.59 | +8.06 | -9.22 | -5.00 | -4.12 | -9.60 |
Relative (%) | +13.0 | +27.8 | +25.9 | -37.1 | +40.7 | -46.3 | +38.9 | -44.5 | -24.1 | -19.9 | -46.3 | |
Step | 58 | 92 | 116 | 134 | 150 | 162 | 174 | 183 | 192 | 200 | 207 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.02 | -6.91 | -1.93 | -9.98 | +9.48 | -6.53 | +3.54 | -2.31 | -3.84 | -1.43 | +4.56 | -6.92 |
Relative (%) | -14.6 | -33.3 | -9.3 | -48.1 | +45.7 | -31.5 | +17.1 | -11.2 | -18.5 | -6.9 | +22.0 | -33.3 | |
Step | 214 | 220 | 226 | 231 | 237 | 241 | 246 | 250 | 254 | 258 | 262 | 265 |
- 58edo
- Step size: 20.690 ¢, octave size: 1200.00 ¢
Pure-octaves 58edo approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +1.49 | +0.00 | +6.79 | +1.49 | +3.59 | +0.00 | +2.99 | +6.79 | +7.30 | +1.49 |
Relative (%) | +0.0 | +7.2 | +0.0 | +32.8 | +7.2 | +17.3 | +0.0 | +14.4 | +32.8 | +35.3 | +7.2 | |
Steps (reduced) |
58 (0) |
92 (34) |
116 (0) |
135 (19) |
150 (34) |
163 (47) |
174 (0) |
184 (10) |
193 (19) |
201 (27) |
208 (34) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.75 | +3.59 | +8.28 | +0.00 | -1.51 | +2.99 | -7.86 | +6.79 | +5.08 | +7.30 | -7.58 | +1.49 |
Relative (%) | +37.4 | +17.3 | +40.0 | +0.0 | -7.3 | +14.4 | -38.0 | +32.8 | +24.6 | +35.3 | -36.7 | +7.2 | |
Steps (reduced) |
215 (41) |
221 (47) |
227 (53) |
232 (0) |
237 (5) |
242 (10) |
246 (14) |
251 (19) |
255 (23) |
259 (27) |
262 (30) |
266 (34) |
- Step size: 20.680 ¢, octave size: 1199.42 ¢
Compressing the octave of 58edo by around half a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 150ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.58 | +0.58 | -1.15 | +5.45 | +0.00 | +1.97 | -1.73 | +1.15 | +4.87 | +5.30 | -0.58 |
Relative (%) | -2.8 | +2.8 | -5.6 | +26.3 | +0.0 | +9.5 | -8.4 | +5.6 | +23.5 | +25.6 | -2.8 | |
Steps (reduced) |
58 (58) |
92 (92) |
116 (116) |
135 (135) |
150 (0) |
163 (13) |
174 (24) |
184 (34) |
193 (43) |
201 (51) |
208 (58) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.61 | +1.39 | +6.02 | -2.31 | -3.87 | +0.58 | -10.31 | +4.29 | +2.54 | +4.72 | -10.19 | -1.15 |
Relative (%) | +27.1 | +6.7 | +29.1 | -11.2 | -18.7 | +2.8 | -49.8 | +20.7 | +12.3 | +22.8 | -49.3 | -5.6 | |
Steps (reduced) |
215 (65) |
221 (71) |
227 (77) |
232 (82) |
237 (87) |
242 (92) |
246 (96) |
251 (101) |
255 (105) |
259 (109) |
262 (112) |
266 (116) |
- Step size: 20.673 ¢, octave size: 1199.06 ¢
Compressing the octave of 58edo by around 1 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 92edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.94 | +0.00 | -1.88 | +4.60 | -0.94 | +0.94 | -2.82 | +0.00 | +3.66 | +4.04 | -1.88 |
Relative (%) | -4.6 | +0.0 | -9.1 | +22.2 | -4.6 | +4.6 | -13.7 | +0.0 | +17.7 | +19.5 | -9.1 | |
Steps (reduced) |
58 (58) |
92 (0) |
116 (24) |
135 (43) |
150 (58) |
163 (71) |
174 (82) |
184 (0) |
193 (9) |
201 (17) |
208 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.26 | +0.00 | +4.60 | -3.77 | -5.35 | -0.94 | +8.82 | +2.72 | +0.94 | +3.10 | +8.84 | -2.82 |
Relative (%) | +20.6 | +0.0 | +22.2 | -18.2 | -25.9 | -4.6 | +42.7 | +13.1 | +4.6 | +15.0 | +42.7 | -13.7 | |
Steps (reduced) |
215 (31) |
221 (37) |
227 (43) |
232 (48) |
237 (53) |
242 (58) |
247 (63) |
251 (67) |
255 (71) |
259 (75) |
263 (79) |
266 (82) |
- Step size: 20.666 ¢, octave size: 1198.63 ¢
Compressing the octave of 58edo by just under 1.5 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 7-limit WE tuning and 7-limit TE tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.37 | -0.68 | -2.74 | +3.60 | -2.06 | -0.27 | -4.12 | -1.37 | +2.22 | +2.55 | -3.43 |
Relative (%) | -6.6 | -3.3 | -13.3 | +17.4 | -9.9 | -1.3 | -19.9 | -6.6 | +10.8 | +12.3 | -16.6 | |
Step | 58 | 92 | 116 | 135 | 150 | 163 | 174 | 184 | 193 | 201 | 208 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.66 | -1.64 | +2.91 | -5.49 | -7.11 | -2.74 | +6.99 | +0.85 | -0.95 | +1.18 | +6.88 | -4.80 |
Relative (%) | +12.9 | -7.9 | +14.1 | -26.6 | -34.4 | -13.2 | +33.8 | +4.1 | -4.6 | +5.7 | +33.3 | -23.2 | |
Step | 215 | 221 | 227 | 232 | 237 | 242 | 247 | 251 | 255 | 259 | 263 | 266 |
- Step size: 20.663 ¢, octave size: 1198.45 ¢
Compressing the octave of 58edo by just over 1.5 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.55 | -0.96 | -3.09 | +3.19 | -2.51 | -0.76 | -4.64 | -1.92 | +1.65 | +1.95 | -4.05 |
Relative (%) | -7.5 | -4.6 | -15.0 | +15.4 | -12.1 | -3.7 | -22.4 | -9.3 | +8.0 | +9.4 | -19.6 | |
Step | 58 | 92 | 116 | 135 | 150 | 163 | 174 | 184 | 193 | 201 | 208 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.02 | -2.30 | +2.23 | -6.18 | -7.82 | -3.46 | +6.25 | +0.10 | -1.72 | +0.40 | +6.09 | -5.60 |
Relative (%) | +9.8 | -11.1 | +10.8 | -29.9 | -37.9 | -16.8 | +30.2 | +0.5 | -8.3 | +1.9 | +29.5 | -27.1 | |
Step | 215 | 221 | 227 | 232 | 237 | 242 | 247 | 251 | 255 | 259 | 263 | 266 |