User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 7: | Line 7: | ||
= Title2 = | = Title2 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
What follows is a comparison of | What follows is a comparison of compressed-octave 27edo tunings. | ||
; 27edo | ; 27edo | ||
* Step size: 44.444{{c}}, octave size: 1200.0{{c}} | * Step size: 44.444{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves 27edo approximates all harmonics up to 16 within | Pure-octaves 27edo approximates all harmonics up to 16 within 18.3{{c}}. | ||
{{Harmonics in equal|27|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo}} | {{Harmonics in equal|27|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo}} | ||
{{Harmonics in equal|27|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo (continued)}} | {{Harmonics in equal|27|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo (continued)}} | ||
; [[WE|27et, 13-limit WE tuning]] | ; [[WE|27et, 13-limit WE tuning]] | ||
* Step size: 44.375{{c}}, octave size: | * Step size: 44.375{{c}}, octave size: 1198.9{{c}} | ||
Compressing the octave of 27edo by around | Compressing the octave of 27edo by around 2{{c}} results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 within 19.9{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | ||
{{Harmonics in cet|44.375|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning}} | {{Harmonics in cet|44.375|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning}} | ||
{{Harmonics in cet|44.375|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning (continued)}} | {{Harmonics in cet|44.375|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning (continued)}} | ||
; [[97ed12]] | ; [[97ed12]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1197.5{{c}} | ||
Compressing the octave of 27edo by around 2.5{{c}} has the same benefits and drawbacks as the 13-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6{{c}}. The tuning 97ed12 does this. | |||
{{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}} | {{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}} | ||
{{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}} | {{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}} | ||
; [[70ed6]] | ; [[zpi|106zpi]] / [[70ed6]] / [[WE|27et, 7-limit WE tuning]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: ~44.306{{c}}, octave size: ~1196.2{{c}} | ||
Compressing the octave of 27edo by around 3.5{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6. | |||
{{Harmonics in equal| | {{Harmonics in cet|44.306|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi}} | ||
{{Harmonics in equal| | {{Harmonics in cet|44.306|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi (continued)}} | ||
; [[90ed10]] | |||
* Step size: NNN{{c}}, octave size: 1195.9{{c}} | |||
Compressing the octave of 27edo by around 5.5{{c}} results in improved primes 3, 5, 7 and 11, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4{{c}}. The tuning 90ed10 does this. | |||
{{Harmonics in equal|90|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10}} | |||
{{Harmonics in equal|90|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10 (continued)}} | |||
; [[43edt]] | ; [[43edt]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: 1204.3{{c}} | ||
Compressing the octave of 27edo by around 5.5{{c}} results in the same benefits and drawbacks as 90ed10, but amplified. This approximates all harmonics up to 16 within 21.2{{c}}. The tuning 43edt does this. | |||
{{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}} | {{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}} | ||
{{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}} | {{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}} | ||
Revision as of 00:13, 25 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
What follows is a comparison of compressed-octave 27edo tunings.
- 27edo
- Step size: 44.444 ¢, octave size: 1200.0 ¢
Pure-octaves 27edo approximates all harmonics up to 16 within 18.3 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +9.2 | +0.0 | +13.7 | +9.2 | +9.0 | +0.0 | +18.3 | +13.7 | -18.0 | +9.2 |
Relative (%) | +0.0 | +20.6 | +0.0 | +30.8 | +20.6 | +20.1 | +0.0 | +41.2 | +30.8 | -40.5 | +20.6 | |
Steps (reduced) |
27 (0) |
43 (16) |
54 (0) |
63 (9) |
70 (16) |
76 (22) |
81 (0) |
86 (5) |
90 (9) |
93 (12) |
97 (16) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.9 | +9.0 | -21.6 | +0.0 | -16.1 | +18.3 | +13.6 | +13.7 | +18.1 | -18.0 | -6.1 | +9.2 |
Relative (%) | +8.8 | +20.1 | -48.6 | +0.0 | -36.1 | +41.2 | +30.6 | +30.8 | +40.7 | -40.5 | -13.6 | +20.6 | |
Steps (reduced) |
100 (19) |
103 (22) |
105 (24) |
108 (0) |
110 (2) |
113 (5) |
115 (7) |
117 (9) |
119 (11) |
120 (12) |
122 (14) |
124 (16) |
- Step size: 44.375 ¢, octave size: 1198.9 ¢
Compressing the octave of 27edo by around 2 ¢ results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 within 19.9 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.9 | +6.2 | -3.7 | +9.3 | +4.3 | +3.7 | -5.6 | +12.3 | +7.4 | +19.9 | +2.4 |
Relative (%) | -4.2 | +13.9 | -8.5 | +21.0 | +9.7 | +8.3 | -12.7 | +27.8 | +16.8 | +44.9 | +5.5 | |
Step | 27 | 43 | 54 | 63 | 70 | 76 | 81 | 86 | 90 | 94 | 97 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.0 | +1.8 | +15.5 | -7.5 | +20.7 | +10.5 | +5.6 | +5.6 | +9.8 | +18.1 | -14.5 | +0.5 |
Relative (%) | -6.8 | +4.1 | +34.9 | -16.9 | +46.6 | +23.6 | +12.6 | +12.5 | +22.2 | +40.7 | -32.7 | +1.2 | |
Step | 100 | 103 | 106 | 108 | 111 | 113 | 115 | 117 | 119 | 121 | 122 | 124 |
- Step size: NNN ¢, octave size: 1197.5 ¢
Compressing the octave of 27edo by around 2.5 ¢ has the same benefits and drawbacks as the 13-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6 ¢. The tuning 97ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.5 | +5.1 | -5.1 | +7.7 | +2.5 | +1.8 | -7.6 | +10.2 | +5.2 | +17.6 | +0.0 |
Relative (%) | -5.7 | +11.5 | -11.5 | +17.5 | +5.7 | +4.0 | -17.2 | +23.0 | +11.7 | +39.7 | +0.0 | |
Steps (reduced) |
27 (27) |
43 (43) |
54 (54) |
63 (63) |
70 (70) |
76 (76) |
81 (81) |
86 (86) |
90 (90) |
94 (94) |
97 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.5 | -0.8 | +12.8 | -10.2 | +17.9 | +7.6 | +2.7 | +2.6 | +6.9 | +15.0 | -17.6 | -2.5 |
Relative (%) | -12.5 | -1.7 | +28.9 | -23.0 | +40.4 | +17.2 | +6.2 | +6.0 | +15.5 | +33.9 | -39.6 | -5.7 | |
Steps (reduced) |
100 (3) |
103 (6) |
106 (9) |
108 (11) |
111 (14) |
113 (16) |
115 (18) |
117 (20) |
119 (22) |
121 (24) |
122 (25) |
124 (27) |
- Step size: ~44.306 ¢, octave size: ~1196.2 ¢
Compressing the octave of 27edo by around 3.5 ¢ results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4 ¢. Its 7-limit WE tuning and 7-limit TE tuning both do this. So do the tunings 106zpi and 70ed6.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.7 | +3.2 | -7.5 | +5.0 | -0.5 | -1.6 | -11.2 | +6.4 | +1.2 | +13.4 | -4.3 |
Relative (%) | -8.4 | +7.2 | -16.9 | +11.2 | -1.2 | -3.5 | -25.3 | +14.5 | +2.8 | +30.3 | -9.6 | |
Step | 27 | 43 | 54 | 63 | 70 | 76 | 81 | 86 | 90 | 94 | 97 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.9 | -5.3 | +8.2 | -15.0 | +13.0 | +2.7 | -2.3 | -2.5 | +1.6 | +9.7 | +21.4 | -8.0 |
Relative (%) | -22.4 | -12.0 | +18.4 | -33.7 | +29.4 | +6.0 | -5.2 | -5.7 | +3.7 | +21.9 | +48.2 | -18.1 | |
Step | 100 | 103 | 106 | 108 | 111 | 113 | 115 | 117 | 119 | 121 | 123 | 124 |
- Step size: NNN ¢, octave size: 1195.9 ¢
Compressing the octave of 27edo by around 5.5 ¢ results in improved primes 3, 5, 7 and 11, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4 ¢. The tuning 90ed10 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | +2.6 | -8.2 | +4.1 | -1.5 | -2.6 | -12.3 | +5.2 | +0.0 | +12.2 | -5.6 |
Relative (%) | -9.3 | +5.9 | -18.5 | +9.3 | -3.4 | -5.9 | -27.8 | +11.8 | +0.0 | +27.5 | -12.6 | |
Steps (reduced) |
27 (27) |
43 (43) |
54 (54) |
63 (63) |
70 (70) |
76 (76) |
81 (81) |
86 (86) |
90 (0) |
94 (4) |
97 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | -6.7 | +6.7 | -16.4 | +11.5 | +1.1 | -3.9 | -4.1 | +0.0 | +8.1 | +19.7 | -9.7 |
Relative (%) | -25.5 | -15.2 | +15.2 | -37.1 | +26.0 | +2.5 | -8.8 | -9.3 | +0.0 | +18.2 | +44.4 | -21.9 | |
Steps (reduced) |
100 (10) |
103 (13) |
106 (16) |
108 (18) |
111 (21) |
113 (23) |
115 (25) |
117 (27) |
119 (29) |
121 (31) |
123 (33) |
124 (34) |
- Step size: NNN ¢, octave size: 1204.3 ¢
Compressing the octave of 27edo by around 5.5 ¢ results in the same benefits and drawbacks as 90ed10, but amplified. This approximates all harmonics up to 16 within 21.2 ¢. The tuning 43edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.7 | +0.0 | -11.5 | +0.3 | -5.7 | -7.2 | -17.2 | +0.0 | -5.5 | +6.4 | -11.5 |
Relative (%) | -13.0 | +0.0 | -26.0 | +0.6 | -13.0 | -16.3 | -39.0 | +0.0 | -12.4 | +14.6 | -26.0 | |
Steps (reduced) |
27 (27) |
43 (0) |
54 (11) |
63 (20) |
70 (27) |
76 (33) |
81 (38) |
86 (0) |
90 (4) |
94 (8) |
97 (11) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -17.4 | -13.0 | +0.3 | +21.2 | +4.7 | -5.7 | -10.9 | -11.2 | -7.2 | +0.7 | +12.2 | -17.2 |
Relative (%) | -39.3 | -29.3 | +0.6 | +48.0 | +10.7 | -13.0 | -24.6 | -25.4 | -16.3 | +1.6 | +27.6 | -39.0 | |
Steps (reduced) |
100 (14) |
103 (17) |
106 (20) |
109 (23) |
111 (25) |
113 (27) |
115 (29) |
117 (31) |
119 (33) |
121 (35) |
123 (37) |
124 (38) |