User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 16: Line 16:


; [[WE|22et, 11-limit WE tuning]]  
; [[WE|22et, 11-limit WE tuning]]  
* Step size: 54.494{{c}}, octave size: NNN{{c}}
* Step size: 54.494{{c}}, octave size: 1198.9{{c}}
Compressing the octave of 22edo by around half a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
Compressing the octave of 22edo by around 1{{c}} results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 26.5{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
{{Harmonics in cet|54.494|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning}}
{{Harmonics in cet|54.494|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning}}
{{Harmonics in cet|54.494|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning (continued)}}
{{Harmonics in cet|54.494|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning (continued)}}


; [[zpi|80zpi]]  
; [[zpi|80zpi]]  
* Step size: 54.483{{c}}, octave size: NNN{{c}}
* Step size: 54.483{{c}}, octave size: 1198.6{{c}}
Compressing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 80zpi does this.
Compressing the octave of 22edo by around 1{{c}} results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 27.1{{c}}. The tuning 80zpi does this.
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}}
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}}
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}}
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}}


; [[35edt]]  
; [[57ed6]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 57ed6 does this.
{{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 57ed6}}
{{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 57ed6 (continued)}}
 
; [[13edf]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|13|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|13|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}


; [[35edt]]  
; [[35edt]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 35edt does this.
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt (continued)}}
 
 
13edf
35edt

Revision as of 01:16, 24 August 2025

Title1

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.1 -8.5 -8.2 +4.1 -12.6 +19.5 -12.3 -16.9 +0.0 +34.3 -16.7
Relative (%) -4.1 -8.5 -8.2 +4.1 -12.6 +19.6 -12.4 -17.0 +0.0 +34.4 -16.7
Steps
(reduced)
12
(12)
19
(19)
24
(24)
28
(28)
31
(31)
34
(34)
36
(36)
38
(38)
40
(0)
42
(2)
43
(3)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.4 +3.4 +6.7 +21.5 +6.7 +40.7 +10.1 +6.7 +24.9 -39.9 +10.1
Relative (%) +3.3 +3.3 +6.7 +21.4 +6.7 +40.6 +10.0 +6.7 +24.8 -39.8 +10.0
Steps
(reduced)
12
(5)
19
(5)
24
(3)
28
(0)
31
(3)
34
(6)
36
(1)
38
(3)
40
(5)
41
(6)
43
(1)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +0.0 +2.5 +16.6 +1.2 +34.7 +3.7 +0.0 +17.8 -47.1 +2.5
Relative (%) +1.2 +0.0 +2.5 +16.6 +1.2 +34.6 +3.7 +0.0 +17.8 -47.1 +2.5
Steps
(reduced)
12
(12)
19
(0)
24
(5)
28
(9)
31
(12)
34
(15)
36
(17)
38
(0)
40
(2)
41
(3)
43
(5)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.8 -0.8 +1.5 +15.5 +0.0 +33.3 +2.3 -1.5 +16.2 -48.7 +0.8
Relative (%) +0.8 -0.8 +1.5 +15.4 +0.0 +33.3 +2.3 -1.5 +16.2 -48.7 +0.8
Steps
(reduced)
12
(12)
19
(19)
24
(24)
28
(28)
31
(0)
34
(3)
36
(5)
38
(7)
40
(9)
41
(10)
43
(12)

Title2

Octave stretch or compression

What follows is a comparison of stretched- and compressed-octave 22edo tunings.

22edo
  • Step size: 54.545 ¢, octave size: 1200.0 ¢

Pure-octaves 22edo approximates all harmonics up to 16 within 22.3 ¢. The optimal 13-limit WE tuning has octaves only 0.01 ¢ different from pure-octaves 22edo, and the 13-limit TE tuning has octaves only 0.08 ¢ different, so by those metrics pure-octaves 22edo might be considered already optimal.

Approximation of harmonics in 22edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 +7.1 +0.0 -4.5 +7.1 +13.0 +0.0 +14.3 -4.5 -5.9 +7.1
Relative (%) +0.0 +13.1 +0.0 -8.2 +13.1 +23.8 +0.0 +26.2 -8.2 -10.7 +13.1
Steps
(reduced)
22
(0)
35
(13)
44
(0)
51
(7)
57
(13)
62
(18)
66
(0)
70
(4)
73
(7)
76
(10)
79
(13)
Approximation of harmonics in 22edo (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -22.3 +13.0 +2.6 +0.0 +4.1 +14.3 -24.8 -4.5 +20.1 -5.9 +26.3 +7.1
Relative (%) -41.0 +23.8 +4.8 +0.0 +7.6 +26.2 -45.4 -8.2 +36.9 -10.7 +48.2 +13.1
Steps
(reduced)
81
(15)
84
(18)
86
(20)
88
(0)
90
(2)
92
(4)
93
(5)
95
(7)
97
(9)
98
(10)
100
(12)
101
(13)
22et, 11-limit WE tuning
  • Step size: 54.494 ¢, octave size: 1198.9 ¢

Compressing the octave of 22edo by around 1 ¢ results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 26.5 ¢. Its 11-limit WE tuning and 11-limit TE tuning both do this.

Approximation of harmonics in 22et, 11-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.1 +5.3 -2.3 -7.1 +4.2 +9.8 -3.4 +10.7 -8.3 -9.8 +3.1
Relative (%) -2.1 +9.8 -4.2 -13.1 +7.7 +18.0 -6.2 +19.6 -15.1 -17.9 +5.6
Step 22 35 44 51 57 62 66 70 73 76 79
Approximation of harmonics in 22et, 11-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -26.5 +8.7 -1.8 -4.5 -0.5 +9.5 +24.9 -9.4 +15.1 -10.9 +21.1 +1.9
Relative (%) -48.7 +15.9 -3.3 -8.3 -0.9 +17.5 +45.7 -17.2 +27.8 -20.0 +38.8 +3.6
Step 81 84 86 88 90 92 94 95 97 98 100 101
80zpi
  • Step size: 54.483 ¢, octave size: 1198.6 ¢

Compressing the octave of 22edo by around 1 ¢ results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 27.1 ¢. The tuning 80zpi does this.

Approximation of harmonics in 80zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.4 +4.9 -2.7 -7.7 +3.6 +9.1 -4.1 +9.9 -9.1 -10.6 +2.2
Relative (%) -2.5 +9.1 -5.0 -14.1 +6.6 +16.7 -7.6 +18.2 -16.6 -19.5 +4.0
Step 22 35 44 51 57 62 66 70 73 76 79
Approximation of harmonics in 80zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +27.1 +7.7 -2.7 -5.5 -1.5 +8.5 +23.9 -10.4 +14.1 -12.0 +20.0 +0.8
Relative (%) +49.7 +14.2 -5.0 -10.1 -2.7 +15.6 +43.8 -19.1 +25.8 -22.0 +36.8 +1.5
Step 82 84 86 88 90 92 94 95 97 98 100 101
57ed6
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 22edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 57ed6 does this.

Approximation of harmonics in 57ed6
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.8 +2.8 -5.5 -10.9 +0.0 +5.2 -8.3 +5.5 -13.6 -15.4 -2.8
Relative (%) -5.1 +5.1 -10.1 -20.0 +0.0 +9.6 -15.2 +10.1 -25.1 -28.3 -5.1
Steps
(reduced)
22
(22)
35
(35)
44
(44)
51
(51)
57
(0)
62
(5)
66
(9)
70
(13)
73
(16)
76
(19)
79
(22)
Approximation of harmonics in 57ed6 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +21.9 +2.5 -8.1 -11.0 -7.1 +2.8 +18.0 -16.4 +8.0 -18.1 +13.8 -5.5
Relative (%) +40.3 +4.6 -14.9 -20.2 -13.1 +5.1 +33.1 -30.1 +14.7 -33.3 +25.3 -10.1
Steps
(reduced)
82
(25)
84
(27)
86
(29)
88
(31)
90
(33)
92
(35)
94
(37)
95
(38)
97
(40)
98
(41)
100
(43)
101
(44)
35edt
  • Step size: NNN ¢, octave size: NNN ¢

_ing the octave of 22edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 35edt does this.

Approximation of harmonics in 35edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.5 +0.0 -9.0 -14.9 -4.5 +0.4 -13.5 +0.0 -19.4 -21.4 -9.0
Relative (%) -8.3 +0.0 -16.5 -27.4 -8.3 +0.6 -24.8 +0.0 -35.7 -39.3 -16.5
Steps
(reduced)
22
(22)
35
(0)
44
(9)
51
(16)
57
(22)
62
(27)
66
(31)
70
(0)
73
(3)
76
(6)
79
(9)
Approximation of harmonics in 35edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +15.5 -4.1 -14.9 -17.9 -14.2 -4.5 +10.6 -23.9 +0.4 -25.8 +5.9 -13.5
Relative (%) +28.5 -7.6 -27.4 -33.0 -26.2 -8.3 +19.5 -43.9 +0.6 -47.6 +10.8 -24.8
Steps
(reduced)
82
(12)
84
(14)
86
(16)
88
(18)
90
(20)
92
(22)
94
(24)
95
(25)
97
(27)
98
(28)
100
(30)
101
(31)